
SAND2006-2649 Unlimited Release
Printed May 2006

ML 5.0 Smoothed Aggregation User’s Guide

Michael W. Gee and Christopher M. Siefert
Computational Math & Algorithms

Sandia National Laboratories
Mailstop 1320
P.O. Box 5800

Albuquerque, NM 87185-1320

Jonathan J. Hu and Ray S. Tuminaro
Computational Math & Algorithms

Sandia National Laboratories
Mailstop 9159
P.O. Box 0969

Livermore, CA 94551-0969

Marzio G. Sala
ETH Zürich Computational Laboratory

CAB F84
ETH Zentrum
8092 Zürich

Abstract
ML is a multigrid preconditioning package intended to solve linear systems of equations Ax = b

where A is a user supplied n× n sparse matrix, b is a user supplied vector of length n and x is a vector
of length n to be computed. ML should be used on large sparse linear systems arising from partial
differential equation (PDE) discretizations. While technically any linear system can be considered, ML
should be used on linear systems that correspond to things that work well with multigrid methods
(e.g. elliptic PDEs). ML can be used as a stand-alone package or to generate preconditioners for a
traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with
the Aztec 2.1 and AztecOO iterative packages [19]. However, other solvers can be used by supplying
a few functions.

This document describes one specific algebraic multigrid approach: smoothed aggregation. This
approach is used within several specialized multigrid methods: one for the eddy current formulation
for Maxwell’s equations, and a multilevel and domain decomposition method for symmetric and non-
symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dy-
namics problems). Other methods exist within ML but are not described in this document. Examples
are given illustrating the problem definition and exercising multigrid options.

3

(page intentionally left blank)

4

Contents

1 Notational Conventions 7

2 Overview 7

3 Multigrid Background 7

4 Quick Start 8

5 Configuring and Building ML 9
5.1 Building in Standalone Mode . 9
5.2 Building with Aztec 2.1 Support . 10
5.3 Building with Trilinos Support (RECOMMENDED) 10

5.3.1 Enabling Third Party Library Support 11
5.3.2 Enabling Profiling . 13

6 ML and Epetra: Getting Started with the MultiLevelPreconditioner Class 14
6.1 Example 1: ml preconditioner.cpp . 14
6.2 Example 2: ml 2level DD.cpp . 16
6.3 Tips for Achieving Good Parallel Performance 17

6.3.1 Hints for the Impatient User . 18
6.3.2 Dynamic Load-balancing . 18

6.4 List of All Parameters for MultiLevelPreconditioner Class 21
6.4.1 General Options . 22
6.4.2 Aggregation Parameters . 23
6.4.3 Smoothing Parameters . 24
6.4.4 Coarsest Grid Parameters . 26
6.4.5 Load-balancing Options . 26
6.4.6 Visualization . 27
6.4.7 Miscellaneous . 28
6.4.8 Null Space Detection . 28
6.4.9 Aggregation Strategies . 29

6.5 Default Parameter Settings for Common Problem Types 29
6.6 Analyzing the ML preconditioner . 31

6.6.1 Cheap Analysis of All Level Matrices 32
6.6.2 Analyze the Effect of Smoothers . 32
6.6.3 Analyze the effect of the ML cycle on a random vector 33
6.6.4 Test different smoothers . 33

6.7 Visualization Capabilities . 36
6.7.1 Visualizing the Aggregates . 36
6.7.2 Visualizing the effect of the ML Preconditioner and Smoothers . . . 38

6.8 Print the Computational Stencil for a 2D Cartesian Grid 39

5

7 Using the Maxwell Solver in ML 41
7.1 Background . 41
7.2 Notational conventions . 41
7.3 Operators that the user must supply . 41

7.3.1 Description of the auxiliary nodal matrix K(n) 41
7.3.2 Description of the discrete gradient matrix T 42

7.4 Smoother options . 42

8 Advanced Usage of ML 43

9 Multigrid & Smoothing Options 44

10 Smoothed Aggregation Options 46
10.1 Aggregation Options . 46
10.2 Interpolation Options . 47

11 Advanced Usage of ML and Epetra 48

12 Using ML without Epetra 49
12.1 Creating a ML matrix: Single Processor . 49
12.2 Creating a ML matrix: Multiple Processors 51

13 MLMEX: The MATLAB Interface for ML 54
13.1 Configure and Make . 54
13.2 Using MLMEX . 55

13.2.1 Setup Mode . 55
13.2.2 Solve Mode . 55
13.2.3 Cleanup Mode . 56
13.2.4 Status Mode . 56
13.2.5 Aggregate Mode . 56

6

1 Notational Conventions

In this guide, we show typed commands in this font:

% a_really_long_command

The character % indicates any shell prompt1. Function names are shown as ML Gen Solver.
Names of packages or libraries as reported in small caps, as Epetra. Mathematical entities
are shown in italics.

2 Overview

This guide describes the use of an algebraic multigrid method within the ML package. The
algebraic multigrid method can be used to solve linear system systems of type

Ax = b (1)

where A is a user supplied n × n sparse matrix, b is a user supplied vector of length n and
x is a vector of length n to be computed. ML is intended to be used on (distributed) large
sparse linear systems arising from partial differential equation (PDE) discretizations. While
technically any linear system can be considered, ML should be used on linear systems that
correspond to things that work well with multigrid methods (e.g. elliptic PDEs).

The ML package is used by creating a ML object and then associating a matrix, A, and
a set of multigrid parameters which describe the specifics of the solver. Once created and
initialized, the ML object can be used to solve linear systems.

This manual is structured as follows. Multigrid and multilevel methods are briefly re-
called in Section 3. A quick start is reported in Section 4. The process of configuring and
building ML is outlined in Section 5. Section 6 shows the basic usage of ML as a black-
box preconditioner for Epetra matrices. The definition of (parallel) preconditioners using
ML Epetra::MultiLevelPreconditioner is detailed. This class only requires the linear system
matrix, and a list of options. Available parameters for ML Epetra::MultiLevelPreconditioner
are reported in Section 6.4. Section 7 reports how to use the Maxwell solvers of ML. More
advanced uses of ML are presented in Section 8. Here, we present how to define and
fine-tune smoothers, coarse grid solver, and the multilevel hierarchy. Multigrid options are
reported in Section 9. Smoothing options are reported in Section 10, where we also present
how to construct a user’s defined smoother. Advanced usage of ML with Epetra objects
is reported in Section 11. Section 12 reports how to define matrices in ML format without
depending on epetra.

3 Multigrid Background

A brief multigrid description is given (see [3], [9], or [10] for more information). A multigrid
solver tries to approximate the original PDE problem of interest on a hierarchy of grids and
use ‘solutions’ from coarse grids to accelerate the convergence on the finest grid. A simple
multilevel iteration is illustrated in Figure 1. In the above method, the S1

k()’s and S2
k()’s

1For simplicity, commands are shown as they would be issued in a Linux or Unix environment. Note, however, that ML
has and can be built successfully in a Windows environment.

7

/* Solve Ak u = b (k is current grid level) */
proc multilevel(Ak, b, u, k)

u = S1
k(Ak, b, u);

if (k 6= Nlevel− 1)
Pk = determine interpolant(Ak);
r̂ = PT

k (b−Aku) ;

Âk+1 = PT
k AkPk; v = 0;

multilevel(Âk+1, r̂, v, k + 1);
u = u + Pk v;
u = S2

k(Ak, b, u);

Figure 1: High level multigrid V cycle consisting of ‘Nlevel’ grids to solve (1), with A0 = A.

are approximate solvers corresponding to k steps of pre and post smoothing, respectively.
These smoothers are discussed in Section 9. For now, it suffices to view them as basic it-
erative methods (e.g. Gauss-Seidel) which effectively smooth out the error associated with
the current approximate solution. The Pk’s (interpolation operators that transfer solutions
from coarse grids to finer grids) are the key ingredient that are determined automatically by
the algebraic multigrid method2. For the purposes of this guide, it is important to under-
stand that when the multigrid method is used, a hierarchy of grids, grid transfer operators
(Pk), and coarse grid discretizations (Ak) are created. To complete the specification of the
multigrid method, smoothers must be supplied on each level. There are several smoothers
within ML or an iterative solver package can be used, or users can write their own smoother
(see Section 9).

4 Quick Start

This section is intended for the impatient user. It’s assumed that you’ve already have a local
copy of Trilinos3. Using the instructions here, your build of Trilinos will have the fol-
lowing libraries: AztecOO, Epetra, EpetraExt, Ifpack, Loca, ML, new package,
NOX, Amesos and Teuchos.

1. cd into the Trilinos directory.

2. Make a build directory, e.g., mkdir sandbox.

3. cd sandbox.

4. Configure Trilinos:

(a) ../configure --enable-teuchos --enable-amesos --enable-aztecoo --enable-epetra

if you do not want to use MPI.

(b) ../configure --enable-teuchos

--enable-amesos --enable-aztecoo --enable-epetra --with-mpi-compilers=/usr/local/mpich/bin

(or wherever your MPI compilers are located) to use MPI.

2The Pk’s are usually determined as a preprocessing step and not computed within the iteration.
3Please refer to the web page http://software.sandia.gov/trilinos to know how to obtain a copy of Trilinos.

8

5. Build Trilinos: make.4

6. If your build finished without errors, you should see the directory
Trilinos/sandbox/packages/, with subdirectories below that for each individual
library. ML’s subdirectory, ml, should contain files config.log, config.status,
Makefile, and Makefile.export, and directories src and examples. Directory src

contains object files and libml.a. Directory examples contains executables with exten-
sion .exe, symbolic links to the corresponding source code, and object files. Directory
test is intended primarily for developers and can be ignored.

7. Look in Trilinos/sandbox/packages/ml/examples for examples of how to use ML.
File Trilinos/packages/ml/examples/README suggests how to use the examples.

5 Configuring and Building ML

ML is configured and built using the GNU autoconf [7] and automake [8] tools. It can
be configured and build as a standalone package without or with Aztec 2.1 support (as
detailed in Section 5.1 and 5.2), or as a part of the Trilinos framework [11] (as described
in Section 5.3). Even though ML can be compiled and used as a standalone package, the
recommended approach is to build ML as part of the Trilinos framework, as a richer set
of features are then available.

ML has been configured and built successfully on a wide variety of operating systems,
and with a variety of compilers (as reported in Table 1).

Operating System Compilers(s)
Linux GNU, Intel, Portland Group
MAC OS X GNU
IRIX N32, IRIX 64, HPUX, Solaris, DEC native
ASC Red Storm native and Portland Group
Windows Microsoft and Cygwin

Table 1: Main operating systems and relative compilers supported by ML.

Although it is possible to configure directly in the ML home directory, we strongly advise
against this. Instead, we suggest working in an independent directory and configuring and
building there.

5.1 Building in Standalone Mode

To configure and build ML as a standalone package without any Aztec support, do the
following. It’s assumed that the shell variable $ML_HOME identifies the ML directory.

% cd $ML_HOME

% mkdir standalone

% cd standalone
4If you are using GNU’s make on a machine with more than one processor, then you can speed up the build with make -j

XX, where XX is the number of processors. You can also reduce the size of the link lines with the option --with-gnumake.

9

% $ML_HOME/configure --disable-epetra --disable-aztecoo \

% --prefix=$ML_HOME/standalone

% make

% make install

The ML library file libml.a and the header files will be installed in the directory specified
in --prefix.

5.2 Building with Aztec 2.1 Support

To enable the supports for Aztec 2.1, ML must be configured with the options reported
in the previous section, plus --with-ml aztec2 1 (defaulted to no).

All of the Aztec 2.1 functionality that ML accesses is contained in the file ml_aztec_utils.c.
In principal by creating a similar file, other solver packages could work with ML in the same
way. For the Aztec users there are essentially three functions that are important. The
first is AZ ML Set Amat which converts Aztec matrices into ML matrices by making ap-
propriate ML calls (see Section 12.1 and Section 12.2). It is important to note that when
creating ML matrices from Aztec matrices information is not copied. Instead, wrapper
functions are made so that ML can access the same information as Aztec. The second
is ML Gen SmootherAztec that is used for defining Aztec iterative methods as smoothers
(discussed in Section 9. The third function, AZ set ML preconditioner, can be invoked to
set the Aztec preconditioner to use the multilevel ‘V’ cycle constructed in ML. Thus, it
is possible to invoke several instances of Aztec within one solve: smoother on different
multigrid levels and/or outer iterative solve.

5.3 Building with Trilinos Support (RECOMMENDED)

We recommend to configure and build ML as part of the standard Trilinos build and
configure process. In fact, ML is built by default if you follow the standard Trilinos con-
figure and build directions. Please refer to the Trilinos documentation for information
about the configuration and building of other Trilinos packages.

To configure and build ML through Trilinos, you may need do the following (actual
configuration options may vary depending on the specific architecture, installation, and
user’s need). It’s assumed that shell variable $TRILINOS_HOME (here introduced for the
sake of simplicity only) identifies the Trilinos directory, and, for example, that we are
compiling under LINUX and MPI.

% cd $TRILINOS_HOME

% mkdir LINUX_MPI

% cd LINUX_MPI

% $TRILINOS_HOME/configure \

--enable-teuchos \

--enable-amesos \

--with-mpi-compilers \

--prefix=$TRILINOS_HOME/LINUX_MPI

% make

% make install

10

If required, other Trilinos and ML options can be specified in the configure line. A
complete list of ML options is given in Section 5.3.1 and 5.3.2. You can also find a complete
list and explanations by typing ./configure --help in the ML home directory.

5.3.1 Enabling Third Party Library Support

ML can be configured with the following third party libraries (TPLs): SuperLU, Su-
perLU dist, ParaSails, Zoltan, Metis, and ParMetis. It can take advantage of
the following Trilinos packages: Ifpack, Teuchos, Triutils, Amesos, EpetraExt.
Through Amesos, ML can interface with the direct solvers Klu, Umfpack, SuperLU,
SuperLU dist5, Mumps. It is assumed that you have already built the appropriate li-
braries (e.g., libsuperlu.a) and have the header files. To configure ML with one of the
above TPLs, you must enable the particular TPL interface in ML.

The same configure options that enable certain other Trilinos packages also enable the
interfaces to those packages within ML.

--enable-epetra Enable support for the Epetra package. (Rec-
ommended)

--enable-epetraext Enable support for the EpetraExt package.
(Recommended)

--enable-aztecoo Enable support for the AztecOO package.
(Recommended)

--enable-amesos Enables support for the Amesos package.
Amesos is an interface with several direct
solvers. ML supports Umfpack [5], Klu, Su-
perLU dist (1.0 and 2.0), Mumps [1]. This
package is necessary to use the Amesos inter-
face to direct solvers. (Recommended)

--enable-teuchos Enables support for the Teuchos pack-
age. This package is necessary to use the
ML Epetra::MultiLevelPreconditioner class.
(Recommended)

--enable-triutils Enables support for the Triutils package.
ML uses Triutils in some examples and tests
to create the linear system matrix.

--enable-galeri Enables support for the Galeri package.
ML uses Galeri in some examples and tests
to create the linear system matrix.

--enable-ifpack Enable support for the Ifpack package [12], to
use Ifpack factorizations as smoothers for ML.

5Currently, ML can support SuperLU dist directly (without Amesos support), or through Amesos.

11

To know whether the --enable-package options below reported are enabled or disabled
by default6, please consult the configure at the Trilinos level by typing

$TRILINOS_HOME/configure --help

The following configure line options enable interfaces in ML to certain TPLs. By default,
all the --with-ml TPL options are disabled. For the most up-to-date list, please type
configure --help at the ML package level.

--with-ml parasails Enables interface for ParaSails [4].

--with-ml metis Enables interface for Metis [16].

--with-ml parmetis2x Enables interface for ParMetis, version 2.x.

--with-ml parmetis3x Enables interface for ParMetis [15], version
3.x.

--with-ml superlu Enables ML’s direct interface for serial Su-
perLU [6] 1.0. This interface is deprecated in
favor of the Amesos interface. Note: you
cannot configure ML with both this option and
--enable-amesos.

--with-ml superlu2 Enables ML’s direct interface for serial Su-
perLU [6] 2.0. This interface is deprecated in
favor of the Amesos interface. Note: you
cannot configure ML with both this option and
--enable-amesos.

--with-ml superlu dist Enables ML interface for SuperLU dist [6].
This interface is deprecated in favor of the Ame-
sos interface. Note: you cannot configure ML
with both this option and --enable-amesos.

If one of the above options is enabled, then the user must specify the location of the
header files, with the option

--with-incdirs=<include-locations>

(Header files for Trilinos libraries are automatically located if ML is built through the
Trilinos configure.) In order to link the ML examples, the user must indicate the
location of all the enabled packages’ libraries , with the option

--with-ldflags="<lib-locations>"

--with-libs="<lib-list>"

The user might find useful the option

--disable-examples

6This refers to configurations from the Trilinos top level (that is, using $TRILINOS HOME/configure). If ML if configured
from the ML level (that is, the user directly calls $ML HOME/configure), then all the --enable-package are off by default.

12

which turns off compilation and linking of all Trilinos examples, or

--disable-ml-examples

which turns off compilation and linking of ML examples.

Here is an example configure line, where Metis, ParMetis, Zoltan, and SuperLU are
all used:
./configure --with-mpi-compilers="/usr/local/mpich/bin" CXXFLAGS="-O3" CFLAGS="-O3"

FFLAGS="-O3" --cache-file=config.cache --with-gnumake --with-ml metis --with-ml zoltan

--with-ml parmetis3x --with-ldflags="-L/usr/local/superlu-3.0/lib -L/usr/local/parmetis-3.1

-L/usr/local/zoltan/lib" --with-libs="-lsuperlu -lparmetis -lmetis -lzoltan"

--with-incdirs="-I/usr/local/superlu-3.0/SRC -I/usr/local/parmetis-3.1 -I/usr/local/parmetis-3.1/METISLib

-I/usr/local/parmetis-3.1/ParMETISLib -I/usr/local/zoltan/include"

More details about the installation of Trilinos can be found at the Trilinos web site,

http://software.sandia.gov/Trilinos

and [18, Chapter 1].

5.3.2 Enabling Profiling

All of the options below are disabled by default.

--enable-ml timing This prints out timing of key ML routines.

--enable-ml flops This enables printing of flop counts.

Timing and flop counts are printed when the associated object is destroyed.

13

6 ML and Epetra: Getting Started with the MultiLevelPrecon-
ditioner Class

In this Section we show how to use ML as a preconditioner to Epetra and AztecOO through
the MultiLevelPreconditioner class. This class is derived from the Epetra RowMatrix class,
and is defined in the ML Epetra namespace.

The MultiLevelPreconditioner class automatically constructs all the components of the
preconditioner, using the parameters specified in a Teuchos parameter list. The construc-
tor of this class takes as input an Epetra RowMatrix pointer7 and a Teuchos parameter
list8.

In order to compile, it may also be necessary to include the following files: ml_config.h
(as first ML include), Epetra_ConfigDefs.h (as first Epetra include), Epetra_RowMatrix.h,
Epetra_MultiVector.h, Epetra_LinearProblem.h, and AztecOO.h. Check the Epetra
and AztecOO documentation for more details. Additionally, the user must include the
header file "ml_MultiLevelPreconditioner.h". Also note that the macro HAVE_CONFIG_H

must be defined either in the user’s code or as a compiler flag.

6.1 Example 1: ml preconditioner.cpp

We now give a very simple fragment of code that uses the MultiLevelPreconditioner. For the
complete code, see $ML_HOME/examples/BasicExamples/ml_preconditioner.cpp. The
linear operator A is derived from an Epetra RowMatrix, Solver is an AztecOO object, and
Problem is an Epetra LinearProblem object.

#include "ml_include.h"

#include "ml_MultiLevelPreconditioner.h"

#include "Teuchos_ParameterList.hpp"

...

Teuchos::ParameterList MList;

// set default values for smoothed aggregation in MLList

ML_Epetra::SetDefaults("SA",MLList);

// overwrite with user’s defined parameters

MLList.set("max levels",6);

MLList.set("increasing or decreasing","decreasing");

MLList.set("aggregation: type", "MIS");

MLList.set("coarse: type","Amesos-KLU");

// create the preconditioner

7Note that not all Epetra matrices can be used with ML. Clearly, the input matrix must be a square matrix. Besides, it
is supposed that the OperatorDomainMap(), the OperatorRangeMap() and the RowMatrixRowMap() of the matrix all coincide,
and that each row is assigned to exactly one process.

8In order to use the MultiLevelPreconditioner class, ML must be configured with options -enable-epetra

--enable-teuchos.

14

ML_Epetra::MultiLevelPreconditioner* MLPrec =

new ML_Epetra::MultiLevelPreconditioner(A, MLList, true);

// create an AztecOO solver

AztecOO Solver(Problem)

// set preconditioner and solve

Solver.SetPrecOperator(MLPrec);

Solver.SetAztecOption(AZ_solver, AZ_gmres);

Solver.Iterate(Niters, 1e-12);

...

delete MLPrec;

A MultiLevelPreconditioner may be defined as follows. First, the user defines a Teu-
chos parameter list9. Table 2 briefly reports the most important methods of this class.

set(Name,Value) Add entry Name with value and type specified by Value. Any
C++ type (like int, double, a pointer, etc.) is valid.

get(Name,DefValue) Get value (whose type is automatically specified by DefValue). If
not present, return DefValue.

subList(Name) Get a reference to sublist List. If not present, create the sublist.

Table 2: Some methods of Teuchos::ParameterList class.

Input parameters are set via method set(Name,Value), where Name is a string contain-
ing the parameter name, and Value is the specified parameter value, whose type can be any
C++ object or pointer. A complete list of parameters available for class MultiLevelPrecon-
ditioner is reported in Section 6.4.

The parameter list is passed to the constructor, together with a pointer to the matrix,
and a boolean flag. If this flag is set to false, the constructor will not create the multilevel
hierarchy until when MLPrec->ComputePreconditioner() is called. The hierarchy can be
destroyed using MLPrec->DestroyPreconditioner()10. For instance, the user may define
a code like:

// A is still not filled with numerical values

ML_Epetra::MultiLevelPreconditioner* MLPrec =

new ML_Epetra::MultiLevelPreconditioner(A, MLList, false);

// compute the elements of A

...

// now compute the preconditioner

MLPrec->ComputePreconditioner();

9See the Teuchos documentation for a detailed overview of this class.
10We suggest to always create the preconditioning object with new and to delete it using delete. Some MPI calls occur in

DestroyPreconditioner(), so the user should not call MPI Finalize() or delete the communicator used by ML before the
preconditioning object is destroyed.

15

// solve the linear system

...

// destroy the previously define preconditioner, and build a new one

MLPrec->DestroyPreconditioner();

// re-compute the elements of A

// now re-compute the preconditioner, using either

MLPrec->ComputePreconditioner();

// or

MLPrec->ReComputePreconditioner();

// re-solve the linear system

// .. finally destroy the object

delete MLPrec;

In this fragment of code, the user defines the ML preconditioner, but the preconditioner
is created only with the call ComputePreconditioner(). This may be useful, for exam-
ple, when ML is used in conjunction with nonlinear solvers (like Nox [17]). Method
ReComputePreconditioner() can be used to recompute the preconditioner using already
available information about the aggregates. ReComputePreconditioner() reuses the al-
ready computed tentative prolongator, then recomputes the smoothed prolongators and the
other components of the hierarchy, like smoothers and coarse solver11.

6.2 Example 2: ml 2level DD.cpp

In the second example, a two level domain decomposition preconditioner is constructed.
The coarse space is defined using aggregation. It is worthwhile to compare the parameters
selected here to the default parameters stated in Table 6.

File $ML HOME/examples/TwoLevelDD/ml 2level DD.cpp reports the entire code. In
the example, the linear system matrix A, is an Epetra CrsMatrix corresponding to the
discretization of a Laplacian on a 2D Cartesian grid. The solution vector and right-hand
side are x and b respectively.
The AztecOO linear problem is defined as

Epetra_LinearProblem problem(&A, &x, &b);

AztecOO solver(problem);

We create the Teuchos parameter list as follows:

ParameterList MLList;

ML_Epetra::SetDefaults("DD", MLList);

MLList.set("max levels",2);

MLList.set("increasing or decreasing","increasing");

MLList.set("aggregation: type", "METIS");

11Note that the hierarchy produced by ReComputePreconditioner() can differ from that produced by
ComputePreconditioner() for non-zero threshold values.

16

MLList.set("aggregation: nodes per aggregate", 16);

MLList.set("smoother: pre or post", "both");

MLList.set("coarse: type","Amesos-KLU");

MLList.set("smoother: type", "Aztec");

The last option tells ML to use the Aztec preconditioning function as a smoother. All
Aztec preconditioning options can be used as ML smoothers. Aztec requires an integer
vector options and a double vector params. Those can be defined as follows:

int options[AZ_OPTIONS_SIZE];

double params[AZ_PARAMS_SIZE];

AZ_defaults(options,params);

options[AZ_precond] = AZ_dom_decomp;

options[AZ_subdomain_solve] = AZ_icc;

MLList.set("smoother: Aztec options", options);

MLList.set("smoother: Aztec params", params);

The last two commands set the pointer to options and params in the parameter list12.
The ML preconditioner is created as in the previous example,

ML_Epetra::MultiLevelPreconditioner* MLPrec =

new ML_Epetra::MultiLevelPreconditioner(A, MLList, true);

and we can check that no options have been misspelled, using

MLPrec->PrintUnused();

The AztecOO solver is called using, for instance,

solver.SetPrecOperator(MLPrec);

solver.SetAztecOption(AZ_solver, AZ_cg_condnum);

solver.SetAztecOption(AZ_kspace, 160);

solver.Iterate(1550, 1e-12);

Finally, some (limited) information about the preconditioning phase are obtained using

cout << MLPrec->GetOutputList();

Note that the input parameter list is copied in the construction phase, hence later changes
to MLList will not affect the preconditioner. Should the user need to modify parameters in
the MLPrec’s internally stored parameter list, he or she can get a reference to the internally
stored list:

ParameterList& List = MLPrec->GetList();

and then directly modify List. Method GetList() should be used carefully, as a change
to List may modify the behavior of MLPrec.

6.3 Tips for Achieving Good Parallel Performance

This section gives a few tips on tuning ML’s parallel performance.
12Only the pointer is copied in the parameter list, not the array itself. Therefore, options and params should not go out of

scope before the destruction of the preconditioner.

17

Uncoupled Attempts to construct aggregates of optimal size (3d nodes in d
dimensions). Each process works independently, and aggregates
cannot span processes.

Coupled As Uncoupled, but aggregates can span processes (deprecated).
MIS Uses a maximal independent set technique to define the aggre-

gates. Aggregates can span processes. May provide better qual-
ity aggregates than either Coupled or uncoupled. Computation-
ally more expensive than either because it requires matrix-matrix
product.

Uncoupled-MIS Uses Uncoupled for all levels until there is 1 aggregate per proces-
sor, then switches over to MIS. The coarsening scheme on a given
level cannot be specified with this option.

METIS Use a graph partitioning algorithm to creates the aggregates,
working process-wise. The number of nodes in each aggregate is
specified with the option aggregation: nodes per aggregate.
Requires ML to be configured with --with-ml metis.

ParMETIS As METIS, but partition the global graph. Requires
--with-ml parmetis2x or --with-ml parmetis3x. Aggregates
can span arbitrary number of processes. Global number of ag-
gregates can be specified with the option aggregation: global
number.

Table 3: ML Epetra::MultiLevelPreconditioner: Available coarsening schemes.

6.3.1 Hints for the Impatient User

1. Use the matrix repartitioning option. This is discussed in detail in the next section,
§6.3.2.

2. In order to reduce message-passing latency, try limiting the number of multigrid levels
to 3 or 4. The syntax is described in §6.4.1.

3. Instead of doing a direct solve on the coarsest level, try a few smoothing sweeps instead.
See §6.4.4.

4. For a symmetric positive definite linear system, choose a smoother whose computa-
tional kernel is a matvec, such as the Chebyshev polynomial smoother. See §6.4.3.

6.3.2 Dynamic Load-balancing

ML supports dynamic load-balancing of coarse-level matrices in the multigrid precondi-
tioner. This is extremely important for two reasons. First, it is not unusual for the message-
passing latency on a coarse level to be roughly equivalent to the latency of the fine level,
even though the number of matrix unknowns on the coarse level is much smaller than on
the fine level. Second, as the number of unknowns per processor becomes small, ML’s
aggregation methods become less effective. The coarsening rate may drop, thus leading to
more multigrid levels than one might observe in serial.

We now give two code fragments to demonstrate how to use the repartitioning options.
The complete description of options that control repartitioning is given in §6.4.5. The
following code demonstrates repartitioning for a matrix with unknowns that are node-based.

18

Jacobi Point-Jacobi. Damping factor is specified using smoother:
damping factor, and the number of sweeps with smoother:
sweeps

Gauss-Seidel Point Gauss-Seidel. Damping factor is specified using smoother:
damping factor, and the number of sweeps with smoother:
sweeps

symmetric Gauss-Seidel Point symmetric Gauss-Seidel. Damping factor is specified us-
ing smoother: damping factor, and the number of sweeps with
smoother: sweeps

Aztec Use AztecOO’s built-in preconditioning functions as smoothers.
Or, if smoother: Aztec as solver is true, use approximate
solutions with AztecOO (with smoothers: sweeps iterations
as smoothers. The AztecOO vectors options and params can
be set using smoother: Aztec options and smoother: Aztec
params.

MLS Use MLS smoother. The polynomial order is specified by
smoother: MLS polynomial order, and the alpha value by
smoother: MLS alpha.

user-defined User-defined smoothing function. The function must conform
to the prototype int (*)(ML Smoother *, int inLength,
double *invec, int outLength, double *outvec). The
number of sweeps is controlled via smoother: sweeps. See
ml/examples/BasicExamples/ml user smoothing.cpp.

Table 4: ML Epetra::MultiLevelPreconditioner: Commonly used smoothers.

Teuchos::ParameterList MLList;

MLList.set("repartition: enable",1);

MLList.set("repartition: max min ratio",1.3);

MLList.set("repartition: min per proc",500);

MLList.set("repartition: partitioner","Zoltan");

MLList.set("repartition: Zoltan dimensions",2);

// Zoltan requires coordinates

double *xcoord, *ycoord, *zcoord;

// user must load the coordinates, of coarse ...

MLList.set("x-coordinates", xcoord);

MLList.set("y-coordinates", xcoord);

The following code demonstrates repartitioning for a system arising from the eddy current
approximations to Maxwell’s equations.

Teuchos::ParameterList MLList;

// these correspond to the main edge matrix

MLList.set("repartition: enable",1);

MLList.set("repartition: max min ratio",1.3);

MLList.set("repartition: min per proc",1000);

19

Jacobi Use coarse: sweeps steps of Jacobi (with damping parameter
coarse: damping parameter) as a solver.

Gauss-Seidel Use coarse: sweeps steps of Gauss-Seidel (with damping pa-
rameter coarse: damping parameter) as a solver.

MLS Use degree coarse: MLS polynomial order Chebyshev poly-
nomial as a solver.

Hiptmair Use coarse: sweeps steps of two-stage Hiptmair smoothing,
with subsmoother coarse: subsmoother type, as a solver.

Amesos-KLU Use Klu through Amesos. Coarse grid problem is shipped to
proc 0, solved, and solution is broadcast

Amesos-Superlu Use SuperLU, version 3.0, through Amesos.
Amesos-UMFPACK Use Umfpack through Amesos. Coarse grid problem is shipped

to proc 0, solved, and solution is broadcasted.
Amesos-Superludist Use SuperLU dist through Amesos.
Amesos-MUMPS Use double precision version of Mumps through Amesos.
user-defined User-defined smoothing function. The function must conform

to the prototype int (*)(ML Smoother *, int inLength,
double *invec, int outLength, double *outvec). The
number of sweeps is controlled via coarse: sweeps. See
ml/examples/BasicExamples/ml user smoothing.cpp.

SuperLU Use ML interface to SuperLU(deprecated).

Table 5: ML Epetra::MultiLevelPreconditioner: Some of the available coarse matrix solvers. Note: Amesos
solvers requires ML to be configured with with-ml amesos, and Amesos to be properly configured to
support the specified solver.

MLList.set("repartition: partitioner","Zoltan");

// Zoltan requires coordinates

double *xcoord, *ycoord, *zcoord;

// user must load the coordinates, of coarse ...

MLList.set("x-coordinates", xcoord);

MLList.set("y-coordinates", ycoord);

MLList.set("z-coordinates", zcoord);

// these correspond to the auxiliary node matrix

MLList.set("repartition: node max min ratio",1.5);

MLList.set("repartition: node min per proc",300);

MLList.set("repartition: node partitioner","Zoltan");

MLList.set("repartition: Zoltan dimensions",3);

double *node_xcoord, *node_ycoord, *node_zcoord;

// user must load the coordinates, of coarse ...

MLList.set("x-coordinates", node_xcoord);

20

MLList.set("y-coordinates", node_ycoord);

MLList.set("z-coordinates", node_zcoord);

6.4 List of All Parameters for MultiLevelPreconditioner Class

In this section we give general guidelines for using the MultiLevelPreconditioner class ef-
fectively. The complete list of input parameters is also reported. It is important to point
out that some options can be effectively used only if ML has been properly configured. In
particular:

• Metis aggregation scheme requires --with-ml_metis, or otherwise the code will in-
clude all nodes in the calling processor in a unique aggregate;

• ParMetis aggregation scheme requires --with-ml metis --enable-epetra and
--with-ml parmetis2x or --with-ml parmetis3x.

• Amesos coarse solvers require --enable-amesos --enable-epetra --enable-teuchos.
Moreover, Amesos must have been configure to support the requested coarse solver.
Please refer to the Amesos documentation for more details.

• Ifpack smoothers require --enable-ifpack --enable-epetra --enable-teuchos.

• ParaSails smoother requires --with-ml_parasails.

Note that, in the parameters name, spaces are important: Do not include non-
required leading or trailing spaces, and do separate words by just one space!
Mispelled parameters will not be detected. One may find useful to print unused
parameters by calling PrintUnused() after the construction of the multilevel hierarchy.

Some of the parameters that affect the MultiLevelPreconditioner class can in principle
be different from level to level. By default, the set method for the MultiLevelPreconditioner
class affects all levels in the multigrid hierarchy. In order to change a setting on a particular
level (say, d), the string “(level d)” is appended to the option string (note that a space
must separate the option and the level specification). For instance, assuming decreasing
levels starting from 4, one could set the aggregation schemes as follows:

MLList.set("aggregation: type","Uncoupled");

MLList.set("aggregation: type (level 1)","METIS");

MLList.set("aggregation: type (level 3)","MIS");

If the finest level is 0, and one has 5 levels, the code will use Uncoupled for level 0, METIS
for levels 1 and 2, then MIS for levels 3 and 4. Parameters that can be set differently on
individual levels are denoted with the symbol ? (this symbol is not part of the parameter
name).

21

6.4.1 General Options

output [int] Controls the amount of information
printed to the screen. Ranges from 0 to 10 (0 is
no output, and 10 is incredibly detailed output).
Default: 10.

print unused [int] If non-negative, will print all the unused
parameters on the specified processor. If -1, the
unused parameters will be printed on all pro-
cesses. If -2, nothing will be printed. Default:
-2.

PDE equations [int] Number of PDE equations for each
grid node. This value is not considered for
Epetra VbrMatrix objects, as in this case is ob-
tained from the block map used to construct the
object. Note that only block maps with con-
stant element size can be considered. Default:
1.

Multigrid Cycle Options
cycle applications [int] Number of applications of the multilevel

V-cycle. Default: 1.

max levels [int] Maximum number of levels. Default: 10.

increasing or decreasing [string] If set to increasing, level 0 will corre-
spond to the finest level. If set to decreasing,
max levels - 1 will correspond to the finest
level. Default: increasing.

prec type [string] Multigrid cycle type.
Possible values: MGV, MGW,
full-MGV, one-level-postsmoothing,
two-level-additive, two-level-hybrid,
two-level-hybrid2, projected MGV. Default:
MGV.

projected modes [double**] Array of double vectors containing
modes that should be projected out before and
after the AMG V-cycle is applied. For use with
the projected MGV option. Default: NULL.

22

number of projected modes [int] Number of modes that are to be projected
out before and after the AMG V-cycle is ap-
plied. For use with the projected MGV option.
Possible values: 1,2, or 3. Default: 0.

6.4.2 Aggregation Parameters

aggregation: type ? [string] Define the aggregation scheme. See
Table 3. Default: Uncoupled.

aggregation: threshold [double] Dropping threshold in aggregation.
Default: 0.0.

aggregation: damping factor [double] Damping factor for smoothed aggrega-
tion. Default: 4/3.

aggregation: smoothing sweeps [int] Number of smoothing sweeps to use in the
prolongator smoother. This should be used in
conjunction with larger aggregates, from using
either METIS or ParMETIS aggregation schemes.
If sweeps is equal to 1, then the value of
aggregation: damping factor is used. If
sweeps is greater than 1, the damping factors
are calculated automatically. Default: 1.

aggregation: global aggregates ? [int] Defines the global number of aggregates
(only for METIS and ParMETIS aggregation
schemes).

aggregation: local aggregates ? [int] Defines the number of aggregates of the
calling processor (only for METIS and ParMETIS

aggregation schemes). Note: this value over-
writes aggregation: global aggregates.

aggregation: nodes per aggregate ? [int] Defines the number of nodes to be
assigned to each aggregate (only for METIS

and ParMETIS aggregation schemes). Note:
this value overwrites aggregation: local

aggregates. If none among aggregation:

global aggregates, aggregation: local

aggregates and aggregation: nodes per

aggregate is specified, the default value is 1
aggregate per process.

23

eigen-analysis: type [string] Defines the numerical scheme to be
used to compute an estimation of the maxi-
mum eigenvalue of D−1A, where D = diag(A)
(for smoothed aggregation only). Choices are:
cg (10 steps of conjugate gradient method),
Anomr (the A-norm of the matrix), Anasazi (use
the Arnoldi method), power-method. Default:
Anorm.

aggregation: next-level aggregates

per process ?
[int] Defines the maximum number of next-
level matrix rows per process (only for
ParMETIS aggregation scheme). Default: 128.

aggregation: use tentative

restriction

[bool] If true, then the final restriction opera-
tor at level ` is computed as R` = P T

`,0, where
P`,0 is the tentative prolongator. Note that
the final prolongator is still computed as spec-
ified by parameter aggregation: damping

factor. Default: false.

aggregation: symmetrize [bool] If true, then the final prolongator for
level ` is computed as P` = (I − ω/λmax(A +
AT))P0,`, where ω is the damping param-
eter specified using aggregation: damping

factor, λmax is the maximum eigenvalue of
D−1A, and P0,` is the tentative prolongator at
level `. The restriction is defined as R` = P T

` .
Default: false.

6.4.3 Smoothing Parameters

smoother: sweeps ? [int] Number of sweeps of smoother. Default:
1.

smoother: damping factor ? [double] Smoother damping factor. Default:
0.67.

smoother: pre or post ? [string] It can assume on the following values:
pre, post, both. Default: both.

smoother: type ? [string] Type of the smoother. See Table 4.
Default: symmetric Gauss-Seidel.

smoother: Aztec options ? [int*] Pointer to Aztec’s options vector (only
for Aztec smoother) .

24

smoother: Aztec params ? [double*] Pointer to Aztec’s params vector
(only for Aztec smoother) .

smoother: Aztec as solver ? [bool] If true, smoother: sweeps iterations
of Aztec solvers will be used as smoothers.
If false, only the Aztec’s preconditioner func-
tion will be used as smoother (only for Aztec

smoother). Default: false.

smoother: MLS polynomial order ? [int] Polynomial order for MLS smoothers. De-
fault: 3.

smoother: MLS alpha ? [double] Alpha value for MLS smoothers. De-
fault: 30.0.

smoother: user-defined function [int (*)(ML Smoother *, int inLength,

double *invec, int outLength, double

*outvec)] Pointer to user-defined smoothing
function. Default: NULL.

smoother: user-defined name [string] Label for user-defined smoother. De-
fault: “User-defined”.

smoother: Hiptmair sweeps ? [int] Number of Hiptmair iterations to perform.
Default: 1.

smoother: Hiptmair efficient

symmetric

[bool] Reduce the preconditioner computa-
tional work while maintaining symmetry by do-
ing edge-node relaxation on the first leg of the
V-cycle, and node-edge relaxation on the second
leg. Default: true.

subsmoother: type ? [string] Smoother to be used as a subsmoother
at each step of Hiptmair smoothing. It can as-
sume on the following values: MLS, symmetric
Gauss-Seidel. Default: MLS.

subsmoother: MLS polynomial order

?
[int] Polynomial order for Hiptmair MLS sub-
smoother. Default: 3.

subsmoother: MLS alpha ? [int] Polynomial coefficient for Hiptmair MLS

sub-smoother. Default: 3.

subsmoother: SGS damping factor ? [double] Damping factor for Hiptmair sub-
smoother symmetric Gauss-Seidel. Auto-
matically calculated in the range (0, 2).

25

subsmoother: SGS edge sweeps ? [int] Number of iterations of Hiptmair sub-
smoother SGS to perform on edge problem. De-
fault: 1.

subsmoother: SGS node sweeps ? [int] Number of iterations of Hiptmair sub-
smoother SGS to perform on nodal projection
problem. Default: 1.

6.4.4 Coarsest Grid Parameters

coarse: max size [int] Maximum dimension of the coarse grid.
ML will not coarsen further if current leveĺs size
is less than this value. Default: 128.

coarse: type [string] Coarse solver. See Table 5. Default:
Amesos KLU.

coarse: sweeps [int] (Only for Jacobi, Gauss-Seidel,
symmetric Gauss-Seidel, and Hiptmair.)
Number of sweeps in the coarse solver. Default:
1.

coarse: user-defined function [int (*)(ML Smoother *, int inLength,

double *invec, int outLength, double

*outvec)] Pointer to user-defined smoothing
function. Default: NULL.

coarse: user-defined name [string] Label for user-defined smoother. De-
fault: “User-defined”.

coarse: damping factor [double] (Only for Jacobi and Gauss-Seidel.)
Damping factor in the coarse solver. Default:
0.67.

coarse: max processes [int] Maximum number of processes to be
used in the coarse grid solution (only for
Amesos-Superludist, Amesos-MUMPS). If -1,
Amesos will decide the optimal number of pro-
cessors to be used. Default: -1.

6.4.5 Load-balancing Options

repartition: enable [int] Enable/disable repartitioning. Default: 0

(off).

26

repartition: partitioner [string] Partitioning package to use. Can as-
sume the following values: Zoltan, ParMETIS.
Default: Zoltan.

repartition: max min ratio [double] Specifies desired ratio of gmax/gmin,
where gmax is the maximum number rows over
all processors, and gmin is the minimum number
of rows over all processors. If the actual ratio is
larger, then repartitioning occurs. Default: 1.1.

repartition: min per proc [int] Specifies desired minimum number of rows
per processor. If the actual number is greater,
then repartitioning occurs. Default: 20.

repartition: node max min ratio [double] Maxwell-specific option for auxiliary
nodal hierarchy. Specifies desired ratio of
gmax/gmin, where gmax is the maximum number
rows over all processors, and gmin is the mini-
mum number of rows over all processors. If the
actual ratio is larger, then repartitioning occurs.
Default: 1.1.

repartition: node min per proc [int] Maxwell-specific option for auxiliary nodal
hierarchy. Specifies desired minimum number
of rows per processor. If the actual number is
greater, then repartitioning occurs. Default: 20.

repartition: Zoltan dimensions [int] Dimension of the problem. Can assume
the following values: {2, 3}.

6.4.6 Visualization

viz: enable [bool] Enable/disable visualization. Default:
false.

viz: output format [string] The format of the visualization files.
Can assume the following values: vtk, xyz,
openx. Default: vtk.

viz: print starting solution [bool] Enable/disable printing of initial starting
solution.

viz: equation to plot [bool] In the case of systems of PDEs, the equa-
tion number to print. Default: all equations.

27

6.4.7 Miscellaneous

x-coordinates [double*] Pointer to array of x-coordinates of
mesh nodes (edges, in the case of Maxwell).

y-coordinates [double*] Pointer to array of y-coordinates of
mesh nodes (edges, in the case of Maxwell).

z-coordinates [double*] Pointer to array of z-coordinates of
mesh nodes (edges, in the case of Maxwell).

node: x-coordinates [double*] Pointer to array of x-coordinates of
mesh nodes. (Maxwell only)

node: y-coordinates [double*] Pointer to array of y-coordinates of
mesh nodes. (Maxwell only)

node: z-coordinates [double*] Pointer to array of z-coordinates of
mesh nodes. (Maxwell only)

6.4.8 Null Space Detection

If used in conjunction with Anasazi, ML can compute an approximate null space of the
linear operator to precondition. This can be done using the following options:

null space: type [string] If default vectors, the default null
space are used (no computation required).
If pre-computed, a pointer to the already-
computed null is obtained from option null

space: vectors. If enriched, ML will com-
pute, using Anasazi, an approximation of the
null space of the operator. Default: default

vectors.

null space: vectors [double*]. Pointer to user-supplied null space
vectors.

null space: vectors to compute [int]. If null space: type is set to
enriched, this option indicates the number of
eigenvectors to compute. Default: 1.

null space: add default vectors [bool]. If true, the default null space (one con-
stant vector for each unknown) will be added to
the computed null space. Default: true.

eigen-analysis: tolerance [double] Tolerance for Anasazi. Default: 0.1.

28

eigen-analysis: restart [int] Number of restarts for Anasazi. Default:
2.

6.4.9 Aggregation Strategies

In some case, it is preferable to generate the aggregates using a matrix defined as follows:

Li,j = (xi − xj)
−2, i 6= j, Li,i = −

∑
i6=j

Li,j, (2)

(where xi represents the coordinates of node i) in conjunction with a given nonzero dropping
threshold. This may happen, for instance, when working with bilinear finite elements on
stretched grids. ML can be instructed to generate the aggregates using matrix (2), then
build the preconditioner using the actual linear system matrix, as done in the following code
fragment:

double* x_coord;

double* y_coord; // set to to 0 for 1D problems

double* z_coord; // set to to 0 for 2D problems

// here we define the nodal coordinates...

MLList.set("x-coordinates", x_coord);

MLList.set("y-coordinates", y_coord);

MLList.set("z-coordinates", z_coord);

The double vectors y_coord and/or z_coord can be set to 0. x_coord (and y_coord if
2D, and z_coord if 3D) must be allocated to contain the coordinates for all nodes assigned
to the calling processor, plus that of the ghost nodes. For systems of PDE equations,
the coordinates must refer to the block nodes (that is, x-coordinate of local row i will be
reported in x_coord[i/NumPDEEqns].

The following option can be used:

aggregation: aux: enable [bool]. Enable/disable the use of matrix (2).
Default: false.

6.5 Default Parameter Settings for Common Problem Types

The MultiLevelPreconditioner class provides default values for four different preconditioner
types:

1. Linear elasticity

2. Classical 2-level domain decomposition for the advection diffusion operator

3. 3-level algebraic domain decomposition for the advection diffusion operator

4. Eddy current formulation of Maxwell’s equations

29

O
pt

io
n

N
am

e
T

yp
e

S
A

D
D

D
D
-
M
L

m
a
x
w
e
l
l

m
a
x

l
e
v
e
l
s

i
n
t

10
2

3
10

o
u
t
p
u
t

i
n
t

8
8

8
10

i
n
c
r
e
a
s
i
n
g

o
r

d
e
c
r
e
a
s
i
n
g

s
t
r
i
n
g

i
n
c
r
e
a
s
i
n
g

i
n
c
r
e
a
s
i
n
g

i
n
c
r
e
a
s
i
n
g

d
e
c
r
e
a
s
i
n
g

P
D
E

e
q
u
a
t
i
o
n
s

i
n
t

1
1

1
1

p
r
i
n
t

u
n
u
s
e
d

i
n
t

0
0

0
0

a
g
g
r
e
g
a
t
i
o
n
:

t
y
p
e

s
t
r
i
n
g

U
n
c
o
u
p
l
e
d
-
M
I
S

M
E
T
I
S

M
E
T
I
S

U
n
c
o
u
p
l
e
d
-
M
I
S

a
g
g
r
e
g
a
t
i
o
n
:

l
o
c
a
l

a
g
g
r
e
g
a
t
e
s

i
n
t

–
1

–
–

a
g
g
r
e
g
a
t
i
o
n
:

n
o
d
e
s

p
e
r
a
g
g
r
e
g
a
t
e

i
n
t

–
–

51
2

–
a
g
g
r
e
g
a
t
i
o
n
:

d
a
m
p
i
n
g

f
a
c
t
o
r

d
o
u
b
l
e

4/
3

4/
3

4/
3

4/
3

e
i
g
e
n
-
a
n
a
l
y
s
i
s
:

t
y
p
e

s
t
r
i
n
g

A
n
o
r
m

A
n
o
r
m

A
n
o
r
m

A
n
o
r
m

a
g
g
r
e
g
a
t
i
o
n
:

t
h
r
e
s
h
o
l
d

d
o
u
b
l
e

0.
0

0.
0

0.
0

0.
0

a
g
g
r
e
g
a
t
i
o
n
:

n
e
x
t
-
l
e
v
e
l
a
g
g
r
e
g
a
t
e
s

p
e
r

p
r
o
c
e
s
s

i
n
t

–
–

12
8

–

s
m
o
o
t
h
e
r
:

s
w
e
e
p
s

i
n
t

2
2

2
1

s
m
o
o
t
h
e
r
:

d
a
m
p
i
n
g

f
a
c
t
o
r

d
o
u
b
l
e

0.
67

–
–

1.
0

s
m
o
o
t
h
e
r
:

p
r
e

o
r

p
o
s
t

s
t
r
i
n
g

b
o
t
h

b
o
t
h

b
o
t
h

b
o
t
h

s
m
o
o
t
h
e
r
:

t
y
p
e

s
t
r
i
n
g

s
y
m
m
e
t
r
i
c

G
a
u
s
s
-
S
e
i
d
e
l

A
z
t
e
c

A
z
t
e
c

H
ip

tm
ai

r/
M

L
S

s
m
o
o
t
h
e
r
:

A
z
t
e
c

a
s

s
o
l
v
e
r

b
o
o
l

–
f
a
l
s
e

f
a
l
s
e

fa
ls

e
s
m
o
o
t
h
e
r
:

M
L
S

p
o
l
y
n
o
m
i
a
l

o
r
d
e
r

i
n
t

–
–

–
3

s
m
o
o
t
h
e
r
:

M
L
S

a
l
p
h
a

d
o
u
b
l
e

–
–

–
27

.0
c
o
a
r
s
e
:

t
y
p
e

s
t
r
i
n
g

A
m
e
s
o
s
K
L
U

A
m
e
s
o
s
K
L
U

A
m
e
s
o
s
K
L
U

A
m
e
s
o
s
K
L
U

c
o
a
r
s
e
:

m
a
x

s
i
z
e

i
n
t

16
12

8
12

8
75

c
o
a
r
s
e
:

s
w
e
e
p
s

i
n
t

1
1

1
1

c
o
a
r
s
e
:

d
a
m
p
i
n
g

f
a
c
t
o
r

d
o
u
b
l
e

1.
0

1.
0

1.
0

1.
0

c
o
a
r
s
e
:

m
a
x

p
r
o
c
e
s
s
e
s

i
n
t

16
16

16
–

T
ab

le
6:

D
ef

au
lt

va
lu

es
fo

r
M

L
E

pe
tr

a:
:M

ul
ti

L
ev

el
P

re
co

nd
it

io
ne

r
fo

r
th

e
4

cu
rr

en
tl

y
su

pp
or

te
d

pr
ob

le
m

ty
pe

s
S
A
,

D
D
,

D
D
-
M
L
,

M
a
x
w
e
l
l
.

“–
”

m
ea

ns
no

t
se

t.

30

Default values are listed in Table 6. In the table, SA refers to “classical” smoothed aggre-
gation (with small aggregates and relative large number of levels), DD and DD-ML to domain
decomposition methods (whose coarse matrix is defined using aggressive coarsening and
limited number of levels). Maxwell refers to the solution of Maxwell’s equations.

Default values for the parameter list can be set by ML Epetra::SetDefaults(). The
user can easily put the desired default values in a given parameter list as follows:

Teuchos::ParameterList MLList;

ML_Epetra::SetDefaults(ProblemType, MLList);

or as

Teuchos::ParameterList MLList;

ML_Epetra::SetDefaults(ProblemType, MLList);

For DD and DD-ML, the default smoother is Aztec, with an incomplete factorization ILUT,
and minimal overlap. Memory for the two Aztec vectors is allocated using new, and the
user is responsible to free this memory, for instance as follows:

int* options;

options = MLList.get("smoother: Aztec options", options);

double* params;

params = MLList.get("smoother: Aztec params", params);

.

.

.

// Make sure solve is completed before deleting options & params!!

delete [] options;

delete [] params;

The rational behind this is that the parameter list stores a pointer to those vectors, not
the content itself. (As a general rule, the vectors stored in the parameter list should not be
prematurely destroyed or permitted to go out of scope.)

6.6 Analyzing the ML preconditioner

A successful multilevel preconditioner require the careful choice of a large variety of parame-
ters, for instance each level’s smoother, the aggregation schemes, or the coarse solver. Often,
for non-standard problems, there is no theory to support these choices. Also, sometimes it
is difficult to understand which component of the multilevel cycle is not properly working.
To help to set the multilevel components, ML offers a set of tools, to (empirically) analyze
several components of the multilevel cycles, and the finest-level matrix.

Two examples are included in the ML distribution:

• File examples/Visualization/ml_viz.cpp shows how to visualize the effect of the
ML cycle and each level’s smoother on a random vector;

• File examples/Advanced/ml_analyze.cpp shows who to get some quantitative infor-
mation about each level’s matrix, and multilevel preconditioner.

In the following subsections, we suppose that a MultiLevelPreconditioner object has
already be defined, and the preconditioner computed.

31

6.6.1 Cheap Analysis of All Level Matrices

Method AnalyzeMatrixCheap() will report on standard output general information about
each level’s matrix. An example of output is as reported below. (Here, we report only the
part of output related to the finest level.)

*** Analysis of ML_Operator ‘A matrix level 0’ ***

Number of global rows = 256

Number of equations = 1

Number of stored elements = 1216

Number of nonzero elements = 1216

Mininum number of nonzero elements/row = 3

Maximum number of nonzero elements/row = 5

Average number of nonzero elements/rows = 4.750000

Nonzero elements in strict lower part = 480

Nonzero elements in strict upper part = 480

Max |i-j|, a(i,j) != 0 = 16

Number of diagonally dominant rows = 86 (= 33.59%)

Number of weakly diagonally dominant rows = 67 (= 26.17%)

Number of Dirichlet rows = 0 (= 0.00%)

||A||_F = 244.066240

Min_{i,j} (a(i,j)) = -14.950987

Max_{i,j} (a(i,j)) = 15.208792

Min_{i,j} (abs(a(i,j))) = 0.002890

Max_{i,j} (abs(a(i,j))) = 15.208792

Min_i (abs(a(i,i))) = 2.004640

Max_i (abs(a(i,i))) = 15.208792

Min_i (\sum_{j!=i} abs(a(i,j))) = 2.004640

Max_i (\sum_{j!=i} abs(a(i,j))) = 15.205902

max eig(A) (using power method) = 27.645954

max eig(D^{-1}A) (using power method) = 1.878674

Total time for analysis = 3.147979e-03 (s)

This analysis is “cheap” in the sense that it involves only element-by-element comparison,
plus the computation of the largest-magnitude eigenvalue (which requires some matrix-
vector products). AnalyzeMatrixCheap() can be used for both serial and parallel runs.

6.6.2 Analyze the Effect of Smoothers

For each level, method AnalyzeSmoothers() computes the eigenvectors of the matrix (say,
A). Then, for each eigenvector (say, v) of A, the smoother is applied to the solution of the
homogeneous system

Ae = 0

with starting solution e0 = v. The code reports on file the real and imaginary values of the
eigenvalue corresponding to eigenvector v, and the ||e||/||e0||.

32

The syntax is AnalyzeSmoothers(NumPre, NumPost). NumPre is the number of pre-
smoother applications, and NumPost the number of post-smoother applications. This method
reports on the standard output the following information:

Solving Ae = 0, with a random initial guess

- number of pre-smoother cycle(s) = 5

- number of post-smoother cycle(s) = 5

- all reported data are scaled with their values

before the application of the solver

(0 == perfect solution, 1 == no effect)

- SF is the smoothness factor

Solver Linf L2 SF

Presmoother (level 0, eq 0) 0.827193 0.804528 0.313705

Postsmoother (level 0, eq 0) 0.822015 0.810521 0.342827

Presmoother (level 1, eq 0) 0.972593 0.908874 2.51318

Postsmoother (level 1, eq 0) 0.982529 0.922668 2.53639

6.6.3 Analyze the effect of the ML cycle on a random vector

Method AnalyzeCycle(NumCycles), where NumCycles is the number of multilevel cycles
to apply, applies the already computed ML preconditioner to a random vector, and reports
on standard output the following information:

Solving Ae = 0, with a random initial guess

using 5 ML cycle(s).

- (eq 0) scaled Linf norm after application(s) = 0.0224609

- (eq 0) scaled L2 norm after application(s) = 0.000249379

- (eq 0) scaled smoothness factor = 10.6517

6.6.4 Test different smoothers

The MultiLevelPreconditioner class offers a very easy way to test the effect of a variety of
smoothers on the problem at hand. Once the preconditioning object has been created, a
call to TestSmoothers() performs the following operations:

1. Creates a new linear system, whose matrix is the one used to construct the MultiLevel-
Preconditioner object;

2. Defines a random solution, and the corresponding right-hand side;

3. Defines a zero starting vector for the Krylov solver;

4. Creates a new preconditioning object, with the same options as in the current precon-
ditioner, except for the choice of the smoothers;

5. Solve the linear system with the newly created preconditioner;

6. Reports in a table the iterations to converge and the corresponding CPU time.

33

The following options, to be set before calling ComputePreconditioner(), can be used
to tune the test session:

test: max iters [int] Maximum number of iterations for the
Krylov solver. Default: 500.

test: tolerance [double] Tolerance for the Krylov solver. De-
fault: 1e-5.

test: Jacobi [bool] Enable/disable test with Jacobi
smoother. Default: true.

test: Gauss-Seidel [bool] Enable/disable test with Gauss-Seidel
smoother. Default: true.

test: symmetric Gauss-Seidel [bool] Enable/disable test with symmetric
Gauss-Seidel smoother. Default: true.

test: block Gauss-Seidel [bool] Enable/disable test with block Gauss-
Seidel smoother. Default: true.

test: Aztec [bool] Enable/disable test with AztecOO
smoother. Default: true.

test: Aztec as solver [bool] Enable/disable test with AztecOO as a
solver smoother. Default: true.

test: ParaSails [bool] Enable/disable test with Para-
Sailssmoother. Default: true.

test: IFPACK [bool] Enable/disable test with If-
packsmoother. Default: true.

An example of output is reported below. Note that some smoothers (ParaSails, If-
pack) will be tested only if ML has been properly configured. Note also that TestSmoothers()
requires ML to be configured with option --enable-aztecoo.

--

*** ************************************* ***

*** Analysis of ML parameters (smoothers) ***

*** ************************************* ***

*** maximum iterations = 500

*** tolerance = 1e-05

*** All options as in the input parameter list, except that

*** all levels have the same smoother

*** M: maximum iterations exceeded without convergence

*** N: normal exit status (convergence achieved)

34

*** B: breakdown occurred

*** I: matrix is ill-conditioned

*** L: numerical loss of precision occurred

count smoother type.................its.......||r||/||r_0||..time (s).......

- Jacobi

#0.....n=5, omega=2.50e-01...........12........2.97314e-06....0.0839319......N

#1.....n=5, omega=5.00e-01...........12........6.21844e-06....0.0820519......N

#2.....n=5, omega=7.50e-01...........12........7.52614e-06....0.082267.......N

#3.....n=5, omega=1.00e+00...........12........3.80406e-06....0.082956.......N

#4.....n=5, omega=1.25e+00...........12........2.15858e-06....0.0824361......N

- Gauss-Seidel

#5.....n=5, omega=2.50e-01...........7.........2.20736e-06....0.0857691......N

#6.....n=5, omega=5.00e-01...........7.........1.91864e-06....0.0789189......N

#7.....n=5, omega=7.50e-01...........6.........8.40948e-06....0.076307.......N

#8.....n=5, omega=1.00e+00...........7.........1.36415e-06....0.0792729......N

#9.....n=5, omega=1.25e+00...........7.........1.4833e-06.....0.0790809......N

- Gauss-Seidel (sym)

#10....n=5, omega=2.50e-01...........4.........2.32835e-06....0.149586.......N

#11....n=5, omega=5.00e-01...........4.........2.68576e-06....0.092068.......N

#12....n=5, omega=7.50e-01...........4.........8.51966e-07....0.0793679......N

#13....n=5, omega=1.00e+00...........4.........1.34439e-06....0.0787291......N

#14....n=5, omega=1.25e+00...........4.........5.09185e-06....0.0790669......N

- Gauss-Seidel (block)

#15....n=5, omega=2.50e-01...........6.........6.56673e-06....0.0920131......N

#16....n=5, omega=5.00e-01...........7.........1.77309e-06....0.0881529......N

#17....n=5, omega=7.50e-01...........6.........8.53488e-06....0.0846661......N

#18....n=5, omega=1.00e+00...........6.........2.66381e-06....0.0839909......N

#19....n=5, omega=1.25e+00...........6.........4.87356e-06....0.083786.......N

- Aztec preconditioner

#20....ILU(fill=0)...................7.........4.93736e-06....0.0712331......N

#21....ILU(fill=1)...................6.........3.54992e-06....0.0647091......N

#22....ILU(fill=2)...................7.........1.4724e-06.....0.0678911......N

- Aztec as solver

#23....iterations=1..................7.........1.94081e-06....0.140772.......N

#24....iterations=3..................4.........8.90029e-08....0.0687031......N

#25....iterations=5..................3.........1.00778e-07....0.069193.......N

- ParaSails

35

#26....default.......................20........6.60045e-06....0.214094.......N

*** The best iteration count was obtain in test 25

*** The best CPU-time was obtain in test 21

*** Total time = 2.43798(s)

--

6.7 Visualization Capabilities

6.7.1 Visualizing the Aggregates

ML offers the possibility to visualize the aggregates for all levels. Aggregates generated by
Uncoupled and METIS aggregation schemes can be visualized for serial and parallel runs,
while aggregates generated using MIS and ParMETIS can be visualized only for serial runs.

Data can be stored in the “xyz” format, readable by packages such as XD3D [?]. For each
aggregate, the file contains a line of type

x-coord y-coord <z-coord> aggregate-number

(z-coord is present only for 3D computations.) XD3D can be used to visualize files in this
format, but only for 2D problems. Results are reported in Figure 2.

Data can also be stored in the “vtk legacy” format, readable by packages such as Par-
aView [?]. ParaView allows for 2D and 3D point clouds visualization. It is also possible
to visualize sections of 3D data via cutting planes. In order to use this format, fine level
coordinates must be supplied. Coarse level coordinates are derived from the fine level coor-
dinates via the multigrid restriction operators. Data is stored as follows. The first section
begins with the header

POINTS XX float

where XX is the total number of points. For each point, the coordinates are given as

x-coord y-coord <z-coord>

Next, connectivity information is given in a pair-wise fashion. For example, if the (i, j)
entry of matrix A is nonzero, then there is a line in the data file of the form

2 i j

where the first entry specifies the number of points that follow. (This first entry will always
be 2 because the connectivity is pair-wise.) The next data section specifies the aggregate
to which each point belongs. It begins with the header

POINT_DATA XX

SCALARS aggregate_number int 1

LOOKUP_TABLE default

The section then has a line for each point of the form

aggregate_number

36

The final section specifies the solution (residual) at each point. The section begins with the
header

SCALARS solution float 1

LOOKUP_TABLE default

and then has a line for each point of the form

solution_value

With the exception of connectivity, all information is given in the same order. Hence, all
information for the jth unknown can be found at the jth line of each section.

Figure 2: Decomposition into aggregates. Uniform colors between blue spheres represent the interior of
aggregates. Visualization was done with XD3D.

37

6.7.2 Visualizing the effect of the ML Preconditioner and Smoothers

In some cases, it may be useful to visualize the effect of the ML preconditioner, or of
each level’s smoother, on a random vector (whose components are contained in the interval
[0.5, 1]), to understand if there are zones or directions that are not affected by the current
multilevel preconditioner. This can be easily done with the following code fragment:

double* x_coord;

double* y_coord;

// here we define the nodal coordinates...

MLList.set("viz: enable", true);

//you can also specify "xyz" on the line below

MLList.set("viz: output format", "vtk");

MLList.set("viz: x-coordinates", x_coord);

MLList.set("viz: y-coordinates", y_coord);

// by default the starting solution is not printed

MLList.set("viz: print starting solution", true);

// create the preconditioner

ML_Epetra::MultiLevelPreconditioner * MLPrec =

new ML_Epetra::MultiLevelPreconditioner(*A, MLList, true);

// visualize the effect of the ML preconditioner on a

// random vector. We ask for 10 multilevel cycles

MLPrec->VisualizeCycle(10);

// visualize the effect of each level’s smoother on a

// random vector. We ask for 5 steps of presmoothers,

// and 1 step of postsmoother

MLPrec->VisualizeSmoothers(5,1);

(File ml_viz.cpp contains the compilable code.) We note that the parameters must be set
before calling ComputePreconditioner(). See also Section 6.4.9 for the requirements on
the coordinates vectors. Results will be written in the following files:

• before-presmoother-eqX-levelY.vtk contains the random vector before the appli-
cation of the presmoother, for equation X at level Y;

• after-presmoother-eqX-levelY.vtk contains the random vector after the applica-
tion of the presmoother, for equation X at level Y;

• before-postsmoother-eqX-levelY.vtk contains the random vector before the appli-
cation of the postsmoother, for equation X at level Y;

• after-postsmoother-eqX-levelY.vtk contains the random vector after the applica-
tion of the postsmoother, for equation X at level Y;

• before-cycle-eqX-levelY.vtk contains the random vector before the application of
the MLcycle, for equation X at the finest level;

38

• after-cycle-eqX-levelY.vtk contains the random vector after the application of the
ML cycle, for equation X at finest level.

Xd3d 8.2.1 (14 May 2004)

24/08/04 msala

after-cycle-eq0-level0.xyz

after-cycle-eq0-level0.z

Triangles 3D P1

nodes : 900

faces : 1682

 20 colors

-0.2290006E-03

0.5493995E-03

0.13278E-02

0.21062E-02

0.28846E-02

0.3663E-02

0.44414E-02

0.5219799E-02

0.59982E-02

0.67766E-02

0.7555E-02

0.83334E-02

0.91118E-02

0.98902E-02

0.106686E-01

0.11447E-01

0.122254E-01

0.130038E-01

0.137822E-01

0.145606E-01

0.15339E-01

x
y
z

Figure 3: Starting solution (left) and solution after 10 ML cycles (right). Visualization was done using
XD3D.

6.8 Print the Computational Stencil for a 2D Cartesian Grid

Method PrintStencil2D() can be used to print out the computational stencil for problems
defined on 2D Cartesian grids, if the nodes numbering follows the x-axis. The following
fragment of code shows the use of this method:

int Nx = 16; // nodes along the x-axis

int Ny = 32; // nodes along the y-axis

int NodeID = -1; // print the stencil for this node

int EquationID = 0; // equation 0, useful for vector problems

// MLPrec is a pointer to an already created

// ML_Epetra::MultiLevelPreconditioner

MLPrec->PrintStencil2D(Nx,Ny,NodeID, EquationID);

// also valid in this case

MLPrec->PrintStencil2D(Nx,Ny);

If NodeID == -1, the code considers a node in the center of the computational domain. The
result can be something as follows:

39

2D computational stencil for equation 0 at node 136 (grid is 16 x 16)

0 -1 0

-1 4 -1

0 -1 0

40

7 Using the Maxwell Solver in ML

This section gives a brief overview of how to ML’s AMG preconditioner for the eddy current
formulation of Maxwell’s equations. The solver is intended only for equations in the time
domain (real-valued), not the frequency domain (complex-valued).

7.1 Background

The eddy current formulation of Maxwell’s equations can be written as

∇×∇× ~E + σ ~E = ~f, (3)

where ~E is the unknown electric field to be computed, σ is the spatially-varying electrical

conductivity, and ~f is the known right-hand side. Neumann, Dirichlet, and/or periodic
boundary conditions are supported.

Although we assume that (3) is discretized with first-order edge elements, it is possible
to use this preconditioner for higher-order discretizations, as long as the user provides the
sub-matrix that corresponds to just the first-order discretization. For more theoretical
background and algorithm descriptions, please see [14, 2].

7.2 Notational conventions

For the remainder of the discussion, K(e) denotes the matrix corresponding to the first-order
element discretization of (3). K(e) can be written as

K(e) = S + M,

where S is the stiffness matrix corresponding to the ∇×∇× term in (3), and M is the mass

matrix corresponding to the σ ~E term in (3). The null-space of S is given by the discrete
gradient matrix, T . T corresponds to the null space of the ∇×∇× term in (3). K(n) is an
auxiliary nodal matrix that is described in §7.3.1.

7.3 Operators that the user must supply

The user must provide three matrices:

1. the first-order edge element matrix K(e).

2. the auxiliary nodal matrix K(n).

3. the discrete gradient matrix T .

7.3.1 Description of the auxiliary nodal matrix K(n)

K(n) is a square, Nn ×Nn matrix, where Nn is the number of nodes in the mesh. There are
two ways to construct K(n). The first method is to discretize the PDE∫

Ω

σu · v +

∫
Ω

∇u · ∇v, (4)

41

using nodal linear finite elements on the same mesh as (3). The second method assumes
that you already have T available. K(n) can be formed via the triple-matrix product

TTK(e)T = TTMT,

where we have used the fact that ST = 0.

7.3.2 Description of the discrete gradient matrix T

T is a rectangular, Ne ×Nn matrix, where Ne is the number of edges in the mesh (rows in
K(e)) and Nn is the number of nodes in the mesh (rows in K(n)). Each row of T has at most
two entries, a +1 and/or a −1. There are two ways to construct T . In the first method,
it’s assumed that the mesh topology is available. T can be viewed as a node-edge incidence
matrix of the mesh as a directed graph. As such, each row of T corresponds to an edge,
and the +1/−1 entries in the row are the head/tail of the edge, respectively. Hence, T can
be built one row at a time by visiting each edge and inserting +1/−1 in the appropriate
columns. The second method assumes that K(n) is already constructed. Each off-diagonal
nonzero entry, (i, j), in the upper triangular portion of K(n) corresponds to a row in T
containing a 1 and a −1 in columns i and j.

7.4 Smoother options

The default smoother for Maxwell’s equations is a two-stage smoother that we call Hiptmair
smoothing [13]. This smoother consists of three steps: one step of a smoother S on the
entire system Kx = f ; one step of a smoother S on the projected system TTMTe = TTr,
where r = f − Kx; and finally one step of a smoother S on the entire system with initial
guess x + e.

In serial, the default sub-smoother S is symmetric Gauss-Seidel (SGS). In parallel, the
default sub-smoother S a degree 3 Chebyshev polynomial. The coefficients of this polyno-
mial are calculated automatically based on the coarsening rate of the multigrid hierarchy.
The Chebyshev degree can be changed with the option
smoother: Hiptmair MLS polynomial order

42

8 Advanced Usage of ML

Sections 6 and 6.4 have detailed the use of ML as a black box preconditioner. In some
cases, instead, the user may need to explicitly construct the ML hierarchy. This is reported
in the following sections.

A brief sample program is given in Figure 4. The function ML Create creates a multilevel

ML_Create (&ml_object, N_grids);

ML_Init_Amatrix (ml_object, 0, nlocal, nlocal,(void *) A_data);
ML_Set_Amatrix_Getrow(ml_object, 0, user_getrow, NULL, nlocal_allcolumns);
ML_Set_Amatrix_Matvec(ml_object, 0, user_matvec);

N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_object, 0,
ML_INCREASING, NULL);

ML_Gen_Smoother_Jacobi(ml_object, ML_ALL_LEVELS, ML_PRESMOOTHER, 1,
ML_DEFAULT);

ML_Gen_Solver (ml_object, ML_MGV, 0, N_levels-1);
ML_Iterate(ml_object, sol, rhs);
ML_Destroy(&ml_object);

Figure 4: High level multigrid sample code.

solver object that is used to define the preconditioner. It requires the maximum number of
multigrid levels be specified. In almost all cases, N grids= 20 is more than adequate. The
three ‘Amatrix’ statements are used to define the discretization matrix, A, that is solved.
This is discussed in greater detail in Section 12.1. The multigrid hierarchy is generated
via ML Gen MGHierarchy UsingAggregation. Controlling the behavior of this function is dis-
cussed in Section 10. For now, it is important to understand that this function takes the
matrix A and sets up relevant multigrid operators corresponding to the smoothed aggre-
gation multigrid method [22] [21]. In particular, it generates a graph associated with A,
coarsens this graph, builds functions to transfer vector data between the original graph and
the coarsened graph, and then builds an approximation to A on the coarser graph. Once
this second multigrid level is completed, the same operations are repeated to the second
level approximation to A generating a third level. This process continues until the cur-
rent graph is sufficiently coarse. The function ML Gen Smoother Jacobi indicates that a
Jacobi smoother should be used on all levels. Smoothers are discussed further in Section
9. Finally, ML Gen Solver is invoked when the multigrid preconditioner is fully specified.
This function performs any needed initialization and checks for inconsistent options. After
ML Gen Solver completes ML Iterate can be used to solve the problem with an initial guess
of sol (which will be overwritten with the solution) and a right hand side of rhs. At the
present time, the external interface to vectors are just arrays. That is, rhs and sol are
simple one-dimensional arrays of the same length as the number of rows in A. In addition
to ML Iterate, the function ML Solve MGV can be used to perform one multigrid ‘V’ cycle
as a preconditioner.

43

9 Multigrid & Smoothing Options

Several options can be set to tune the multigrid behavior. In this section, smoothing and
high level multigrid choices are discussed. In the next section, the more specialized topic of
the grid transfer operator is considered.

For most applications, smoothing choices are important to the overall performance of
the multigrid method. Unfortunately, there is no simple advice as to what smoother will
be best and systematic experimentation is often necessary. ML offers a variety of standard
smoothers. Additionally, user-defined smoothers can be supplied and it is possible to use
Aztecas a smoother. A list of ML functions that can be invoked to use built-in smoothers
are given below along with a few general comments.

ML Gen Smoother Jacobi Typically, not the fastest smoother. Should
be used with damping. For Poisson problems,
the recommended damping values are 2

3
(1D), 4

5

(2D), and 5
7

(3D). In general, smaller damping
numbers are more conservative.

ML Gen Smoother GaussSeidel Probably the most popular smoother. Typi-
cally, faster than Jacobi and damping is often
not necessary nor advantageous.

ML Gen Smoother SymGaussSeidel Symmetric version of Gauss Seidel. When us-
ing multigrid preconditioned conjugate gradi-
ent, the multigrid operator must be symmetriz-
able. This can be achieved by using a symmetric
smoother with the same number of pre and post
sweeps on each level.

ML Gen Smoother BlockGaussSeidel Block Gauss-Seidel with a fixed block size. Of-
ten used for PDE systems where the block size
is the number of degrees of freedom (DOFs) per
grid point.

ML Gen Smoother VBlockJacobi Variable block Jacobi smoother. This allows
users to specify unknowns to be grouped into
different blocks when doing block Jacobi.

ML Gen Smoother VBlockSymGaussSeidel Symmetric variable block Gauss-Seidel smooth-
ing. This allows users to specify unknowns to be
grouped into different blocks when doing sym-
metric block Gauss-Seidel.

It should be noted that the parallel Gauss-Seidel smoothers are not true Gauss-Seidel. In
particular, each processor does a Gauss-Seidel iteration using off-processor information from
the previous iteration.

Aztec user’s [19] can invoke ML Gen SmootherAztec to use either Aztec solvers or
Aztec preconditioners as smoothers on any grid level. Thus, for example, it is possible to
use preconditioned conjugate-gradient (where the preconditioner might be an incomplete

44

Cholesky factorization) as a smoother within the multigrid method. Using Krylov smoothers
as a preconditioner could potentially be more robust than using the simpler schemes pro-
vided directly by ML. However, one must be careful when multigrid is a preconditioner to
an outer Krylov iteration. Embedding an inner Krylov method within a preconditioner to
an outer Krylov method may not converge due to the fact that the preconditioner can no
longer be represented by a simple matrix. Finally, it is possible to pass user-defined smooth-
ing functions into ML via ML Set Smoother. The signature of the user defined smoother
function is

int user_smoothing(ML_Smoother *smoother, int x_length, double x[],

int rhs_length, double rhs[])

where smoother is an internal ML object, x is a vector (of length x length) that corre-
sponds to the initial guess on input and is the improved solution estimate on output, and rhs
is the right hand side vector of length rhs length. The function ML Get MySmootherData(smoother)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML Set Smoother invocation). A simple (and suboptimal) damped Jacobi smoother for the
finest grid of our example is given below:

int user_smoothing(ML_Smoother *smoother, int x_length, double x[], int rhs_length, double rhs[])

{

int i;

double ap[5], omega = .5; /* temp vector and damping factor */

Poisson_matvec(ML_Get_MySmootherData(smoother), x_length, x, rhs_length, ap);

for (i = 0; i < x_length; i++) x[i] = x[i] + omega*(rhs[i] - ap[i])/2.;

return 0;

}

A more complete smoothing example that operates on all multigrid levels is given in the file
mlguide.c. This routine uses the functions ML Operator Apply, ML Operator Get Diag, and
ML Get Amatrix to access coarse grid matrices constructed during the algebraic multigrid
process. By writing these user-defined smoothers, it is possible to tailor smoothers to a par-
ticular application or to use methods provided by other packages. In fact, the Aztec meth-
ods within ML have been implemented by writing wrappers to existing Aztec functions
and passing them into ML via ML Set Smoother.

At the present time there are only a few supported general parameters that may be
altered by users. However, we expect that this list will grow in the future. When us-
ing ML Iterate, the convergence tolerance (ML Set Tolerance) and the frequency with which
residual information is output (ML Set ResidualOutputFrequency) can both be set. Addi-
tionally, the level of diagnostic output from either ML Iterate or ML Solve MGV can be set
via ML Set OutputLevel. The maximum number of multigrid levels can be set via ML Create
or ML Set MaxLevels. Otherwise, ML continues coarsening until the coarsest grid is less
than or equal to a specified size (by default 10 degrees of freedom). This size can be set via
ML Aggregate Set MaxCoarseSize.

45

10 Smoothed Aggregation Options

When performing smooth aggregation, the matrix graph is first coarsened (actually vertices
are aggregated together) and then a grid transfer operator is constructed. A number of
parameters can be altered to change the behavior of these phases.

10.1 Aggregation Options

A graph of the matrix is usually constructed by associating a vertex with each equation
and adding an edge between two vertices i and j if there is a nonzero in the (i, j)th or
(j, i)th entry. It is this matrix graph whose vertices are aggregated together that effectively
determines the next coarser mesh. The above graph generation procedure can be altered in
two ways. First, a block matrix graph can be constructed instead of a point matrix graph.
In particular, all the degrees of freedom (DOFs) at a grid point can be collapsed into a
single vertex of the matrix graph. This situation arises when a PDE system is being solved
where each grid point has the same number of DOFs. The resulting block matrix graph is
significantly smaller than the point matrix graph and by aggregating the block matrix graph,
all unknowns at a grid point are kept together. This usually results in better convergence
rates (and the coarsening is actually less expensive to compute). To indicate the number
of DOFs per node, the function ML Aggregate Set NullSpace is used. The second way in
which the graph matrix can be altered is by ignoring small values. In particular, it is often
preferential to ignore weak coupling during coarsening. The error between weakly coupled
points is generally hard to smooth and so it is best not to coarsen in this direction. For
example, when applying a Gauss-Seidel smoother to a standard discretization of

uxx + εuyy = f

(with 0 ≤ ε ≤ 10−6) , there is almost no coupling in the y direction. Consequently, simple
smoothers like Gauss-Seidel do not effectively smooth the error in this direction. If we apply
a standard coarsening algorithm, convergence rates suffer due to this lack of y-direction
smoothing. There are two principal ways to fix this: use a more sophisticated smoother or
coarsen the graph only in the x direction. By ignoring the y-direction coupling in the matrix
graph, the aggregation phase effectively coarsens in only the x-direction (the direction for
which the errors are smooth) yielding significantly better multigrid convergence rates. In
general, a drop tolerance, told, can be set such that an individual matrix entry, A(i, j) is
dropped in the coarsening phase if

|A(i, j)| ≤ told ∗
√
|A(i, i)A(j, j)|.

This drop tolerance (whose default value is zero) is set by ML Aggregate Set Threshold.
There are two different groups of graph coarsening algorithms in ML:

• schemes with fixed ratio of coarsening between levels: uncoupled aggregation, coupled
aggregation, and MIS aggregation. A description of those three schemes along with
some numerical results are given in [20]. As the default, the Uncoupled-MIS scheme
is used which does uncoupled aggregation on finer grids and switches to the more
expensive MIS aggregation on coarser grids;

46

• schemes with variable ratio of coarsening between levels: Metis and ParMetisaggregation.
Those schemes use the graph decomposition algorithms provided by Metis and ParMetis,
to create the aggregates.

Poorly done aggregation can adversely affect the multigrid convergence and the time per
iteration. In particular, if the scheme coarsens too rapidly multigrid convergence may suffer.
However, if coarsening is too slow, the number of multigrid levels increases and the number
of nonzeros per row in the coarse grid discretization matrix may grow rapidly. We refer the
reader to the above paper and indicate that users might try experimenting with the different
schemes via ML Aggregate Set CoarsenScheme Uncoupled, ML Aggregate Set CoarsenScheme Coupled,
ML Aggregate Set CoarsenScheme MIS, ML Aggregate Set CoarsenScheme METIS, and
ML Aggregate Set CoarsenScheme ParMETIS.

10.2 Interpolation Options

An interpolation operator is built using coarsening information, seed vectors, and a damping
factor. We refer the reader to [21] for details on the algorithm and the theory. In this section,
we explain a few essential features to help users direct the interpolation process.

Coarsening or aggregation information is first used to create a tentative interpolation
operator. This process takes a seed vector or seed vectors and builds a grid transfer operator.
The details of this process are not discussed in this document. It is, however, important
to understand that only a few seed vectors are needed (often but not always equal to
the number of DOFs at each grid point) and that these seed vectors should correspond
to components that are difficult to smooth. The tentative interpolation that results from
these seed vectors will interpolate the seed vectors perfectly. It does this by ensuring that
all seed vectors are in the range of the interpolation operator. This means that each seed
vector can be recovered by interpolating the appropriate coarse grid vector. The general
idea of smoothed aggregation (actually all multigrid methods) is that errors not eliminated
by the smoother must be removed by the coarse grid solution process. If the error after
several smoothing iterations was known, it would be possible to pick this error vector as the
seed vector. However, since this is not the case, we look at vectors associated with small
eigenvalues (or singular values in the nonsymmetric case) of the discretization operator.
Errors in the direction of these eigenvectors are typically difficult to smooth as they appear
much smaller in the residual (r = Ae where r is the residual, A is discretization matrix, and
e is the error). For most scalar PDEs, a single seed vector is sufficient and so we seek some
approximation to the eigenvector associated with the lowest eigenvalue. It is well known
that a scalar Poisson operator with Neumann boundary conditions is singular and that the
null space is the constant vector. Thus, when applying smoothed aggregation to Poisson
operators, it is quite natural to choose the constant vector as the seed vector. In many cases,
this constant vector is a good choice as all spatial derivatives within the operator are zero
and so it is often associated with small singular values. Within ML the default is to choose
the number of seed vectors to be equal to the number of DOFs at each node (given via
ML Aggregate Set NullSpace). Each seed vector corresponds to a constant vector for that
DOF component. Specifically, if we have a PDE system with two DOFs per node. Then
one seed vector is one at the first DOF and zero at the other DOF throughout the graph.
The second seed vector is zero at the first DOF and one at the other DOF throughout

47

the graph. In some cases, however, information is known as to what components will be
difficult for the smoother or what null space is associated with an operator. In elasticity,
for example, it is well known that a floating structure has six rigid body modes (three
translational vectors and three rotation vectors) that correspond to the null space of the
operator. In this case, the logical choice is to take these six vectors as the seed vectors in
smoothed aggregation. When this type of information is known, it should be given to ML
via the command ML Aggregate Set NullSpace.

Once the tentative prolongator is created, it is smoothed via a damped Jacobi it-
eration. The reasons for this smoothing are related to the theory where the interpo-
lation basis functions must have a certain degree of smoothness (see [21]). However,
the smoothing stage can be omitted by setting the damping to zero using the function
ML Aggregate Set DampingFactor. Though theoretically poorer, unsmoothed aggregation
can have considerably less set up time and less cost per iteration than smoothed aggrega-
tion. When smoothing, ML has two ways to determine the Jacobi damping parameter and
each require some estimate of the largest eigenvalue of the discretization operator. The cur-
rent default is to use a few iterations of a conjugate-gradient method to estimate this value.
However, if the matrix is nonsymmetric, the infinity norm of the matrix should be used
instead via ML Aggregate Set SpectralNormScheme Anorm. There are several other internal
parameters that have not been discussed in this document. In the future, it is anticipated
that some of these will be made available to users.

11 Advanced Usage of ML and Epetra

Class ML Epetra::MultiLevelOperator is defined in a header file, that must be included as

#include "ml_MultiLevelOperator.h"

Users may also need to include ml_config.h, Epetra_Operator.h, Epetra_MultiVector.h,
Epetra_LinearProblem.h, AztecOO.h. Check the Epetra and AztecOO documentation
for more details.

Let A be an Epetra RowMatrix for which we aim to construct a preconditioner, and let
ml_handle be the structure ML requires to store internal data (see Section 8), created with
the instruction

ML_Create(&ml_handle,N_levels);

where N_levels is the specified (maximum) number of levels. As already pointed out, ML
can accept in input very general matrices. Basically, the user has to specify the number of
local rows, and provide a function to update the ghost nodes (that is, nodes requires in the
matrix-vector product, but assigned to another process). For Epetra matrices, this is done
by the following function

EpetraMatrix2MLMatrix(ml_handle, 0, &A);

and it is important to note that A is not converted to ML format. Instead, EpetraMa-
trix2MLMatrix defines a suitable getrow function (and other minor data structures) that
allows ML to work with A.

Let agg_object a ML Aggregate pointer, created using

48

ML_Aggregate_Create(&agg_object);

At this point, users have to create the multilevel hierarchy, define the aggregation schemes,
the smoothers, the coarse solver, and create the solver. Then, we can finally create the
ML Epetra::MultiLevelOperator object

ML_Epetra::MultiLevelOperator MLop(ml_handle,comm,map,map);

(map being the Epetra Map used to create the matrix) and set the preconditioning operator
of our AztecOO solver,

Epetra_LinearProblem Problem(A,&x,&b);

AztecOO Solver(Problem);

solver.SetPrecOperator(&MLop);

where x and b are Epetra_MultiVector’s defining solution and right-hand side. The linear
problem can now be solved as, for instance,

Solver.SetAztecOption(AZ_solver, AZ_gmres);

solver.Iterate(Niters, 1e-12);

12 Using ML without Epetra

12.1 Creating a ML matrix: Single Processor

Matrices are created by defining some size information, a matrix-vector product and a
getrow function (which is used to extract matrix information). We note that Epetra and
Aztec users do not need to read this (or the next) section as there are special functions to
convert Epetra objects and Aztec matrices to ML matrices (see Section 5.2). Further,
functions for some common matrix storage formats (CSR & MSR) already exist within ML
and do not need to be rewritten13.

Size information is indicated via ML Init Amatrix. The third parameter in the Figure 4
invocation indicates that a matrix with nlocal rows is being defined. The fourth parameter
gives the vector length of vectors that can be multiplied with this matrix. Additionally, a
data pointer, A data, is associated with the matrix. This pointer is passed back into the
matrix-vector product and getrow functions that are supplied by the user. Finally, the
number ‘0’ indicates at what level within the multigrid hierarchy the matrix is to be stored.
For discussions within this document, this is always ‘0’. It should be noted that there
appears to be some redundant information. In particular, the number of rows and the
vector length in ML Init Amatrix should be the same number as the discretization matrices
are square. Cases where these ‘apparently’ redundant parameters might be set differently
are not discussed in this document.

The function ML Set Amatrix Matvec associates a matrix-vector product with the dis-
cretization matrix. The invocation in Figure 4 indicates that the matrix-vector product
function user matvec is associated with the matrix located at level ‘0’ of the multigrid
hierarchy. The signature of user matvec is

13The functions CSR matvec, CSR getrows, MSR matvec and MSR getrows can be used.

49

int user_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,

double ap[])

where A mat is an internal ML object, p is the vector to apply to the matrix, in length is
the length of this vector, and ap is the result after multiplying the discretization matrix by
the vector p and out length is the length of ap. The function ML Get MyMatvecData(Amat)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML Init Amatrix invocation).

Finally, ML Set Amatrix Getrow associates a getrow function with the discretization ma-
trix. This getrow function returns nonzero information corresponding to specific rows. The
invocation in Figure 4 indicates that a user supplied function user getrow is associated
with the matrix located at level ‘0’ of the multigrid hierarchy and that this matrix con-
tains nlocal allcolumns columns and that no communication (NULL) is used (discussed
in the next section). It again appears that some redundant information is being asked as
the number of columns was already given. However, when running in parallel this number
will include ghost node information and is usually different from the number of rows. The
signature of user getrow is

int user_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rows[],

int allocated_space, int columns[], double values[], int row_lengths[])

where Amat is an internal ML object, N requested rows is the number of matrix rows for
which information is returned, requested rows are the specific rows for which informa-
tion will be returned, allocated space indicates how much space has been allocated in
columns and values for nonzero information. The function ML Get MyGetrowData(Amat)
can be used to get a pointer back to the user’s data (i.e. the data pointer given with the
ML Init Amatrix invocation). On return, the user’s function should take each row in order
within requested rows and place the column numbers and the values corresponding to
nonzeros in the arrays columns and values. The length of the ith requested row should
appear in row lengths[i]. If there is not enough allocated space in columns or values,
this routine simply returns a ‘0’, otherwise it returns a ‘1’.

To clarify, these functions, one concrete example is given corresponding to the matrix:
2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2

 . (5)

To implement this matrix, the following functions are defined:

int Poisson_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rows[],

int allocated_space, int columns[], double values[], int row_lengths[])

{

int count = 0, i, start, row;

for (i = 0; i < N_requested_rows; i++) {

if (allocated_space < count+3) return(0);

start = count;

50

row = requested_rows[i];

if ((row >= 0) || (row <= 4)) {

columns[count] = row; values[count++] = 2.;

if (row != 0) { columns[count] = row-1; values[count++] = -1.; }

if (row != 4) { columns[count] = row+1; values[count++] = -1.; }

}

row_lengths[i] = count - start;

}

return(1);

}

and

int Poisson_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,

double ap[])

{

int i;

for (i = 0; i < 5; i++) {

ap[i] = 2*p[i];

if (i != 0) ap[i] -= p[i-1];

if (i != 4) ap[i] -= p[i+1];

}

return 0;

}

Finally, these matrix functions along with size information are associated with the fine grid
discretization matrix via

ML_Init_Amatrix (ml_object, 0, 5, 5, NULL);

ML_Set_Amatrix_Getrow(ml_object, 0, Poisson_getrow, NULL, 5);

ML_Set_Amatrix_Matvec(ml_object, 0, Poisson_matvec);

Notice that in these simple examples Amat was not used. In the next section we give a
parallel example which makes use of Amat. The complete sample program can be found in
the file mlguide.c within the ML code distribution.

12.2 Creating a ML matrix: Multiple Processors

Creating matrices in parallel requires a bit more work. In this section local versus global
indexing as well as communication are discussed. In the description, we reconsider the
previous example (5) partitioned over two processors. The matrix row indices (ranging from
0 to 4) are referred to as global indices and are independent of the number of processors
being used. On distributed memory machines, the matrix is subdivided into pieces that are
assigned to individual processors. ML requires matrices be partitioned by rows (i.e. each
row is assigned to a processor which holds the entire data for that row). These matrix pieces
are stored on each processor as smaller local matrices. Thus, global indices in the original
matrix get mapped to local indices on each processor. In our example, we will assign global
rows 0 and 4 to processor 0 and store them locally as rows 1 and 0 respectively. Global
columns 0, 1, 3, and 4 are stored locally as columns 1, 3, 2, and 0. This induces the local
matrix (

2 −1
2 −1

)
.

51

Likewise, processor 1 is assigned global rows 1, 2, and 3 which are stored locally as rows 0,
1, and 2 respectively. Global columns 0 - 4 are stored locally as columns 3, 0, 1, 2, and 4
inducing the local matrix 2 −1 −1

−1 2 −1
−1 2 −1

 .

At the present time, there are some restrictions as to what type of mappings can be used. In
particular, all global rows stored on a processor must be mapped from 0 to k− 1 where k is
the number of rows assigned to this processor. This row mapping induces a partial column
mapping. Any additional columns must be mapped with consecutive increasing numbers
starting from k.

ML has no notion of global indices and uses only the local indices. In most cases,
another package or application already mapped the global indices to local indices and so
ML works with the existing local indices. Specifically, the parallel version of user getrow

and user matvec should correspond to each processor’s local matrix. This means that when
giving the column information with ML Set Amatrix Getrow, the total number of columns
in the local matrix should be given and that when row k is requested, user getrow should
return the kth local row using local column indices. Likewise, the matrix-vector product
takes a local input vector and multiplies it by the local matrix. It is important to note that
this local input vector does not contain ghost node data (i.e. the input vector is of length
nlocal where nlocal is the number of matrix rows). Thus, user matvec must perform the
necessary communication to update ghost variables. When invoking ML Init Amatrix, the
local number of rows should be given for the number of rows and the vector length14. A
specific communication function must also be passed into ML when supplying the getrow
function so that ML can determine how local matrices on different processors are ‘glued’
together. The signature of the communication function is

int user_comm(double x[], void *Adata)

where A data is the user-defined data pointer specified in the ML Init Amatrix and x is a
vector of length nlocal allcolumns specified in ML Set Amatrix Getrow. This parameter
should be set to the total number of matrix columns stored on this processor. On input,
only the first nlocal elements of x are filled with data where nlocal is the number of
rows/columns specified in ML Init Amatrix. On output, the ghost elements are updated to
their current values (defined on other processors). Thus, after this function a local matrix-
vector product could be properly performed using x. To make all this clear, we give the
new functions corresponding to our two processor example.

int Poisson_getrow(ML_Operator *Amat, int N_requested_rows, int requested_rows[],

int allocated_space, int cols[], double values[], int row_lengths[])

{

int m = 0, i, row, proc, *itemp, start;

itemp = (int *) ML_Get_MyGetrowData(Amat);

proc = *itemp;

14In contrast to ML Set Amatrix Getrow in which the number of local columns are given (including those that correspond to
ghost variables), ML Init Amatrix does not include ghost variables and so both size parameters should be the number of local
rows.

52

for (i = 0; i < N_requested_rows; i++) {

row = requested_rows[i];

if (allocated_space < m+3) return(0);

values[m] = 2; values[m+1] = -1; values[m+2] = -1;

start = m;

if (proc == 0) {

if (row == 0) {cols[m++] = 0; cols[m++] = 2; }

if (row == 1) {cols[m++] = 1; cols[m++] = 3;}

}

if (proc == 1) {

if (row == 0) {cols[m++] = 0; cols[m++] = 1; cols[m++] = 4;}

if (row == 1) {cols[m++] = 1; cols[m++] = 0; cols[m++] = 2;}

if (row == 2) {cols[m++] = 2; cols[m++] = 1; cols[m++] = 3;}

}

row_lengths[i] = m - start;

}

return(1);

}

int Poisson_matvec(ML_Operator *Amat, int in_length, double p[], int out_length,

double ap[])

{

int i, proc, *itemp;

double new_p[5];

itemp = (int *) ML_Get_MyMatvecData(Amat);

proc = *itemp;

for (i = 0; i < in_length; i++) new_p[i] = p[i];

Poisson_comm(new_p, A_data);

for (i = 0; i < out_length; i++) ap[i] = 2.*new_p[i];

if (proc == 0) {

ap[0] -= new_p[2];

ap[1] -= new_p[3];

}

if (proc == 1) {

ap[0] -= new_p[1]; ap[0] -= new_p[4];

ap[1] -= new_p[2]; ap[1] -= new_p[0];

ap[2] -= new_p[3]; ap[2] -= new_p[1];

}

return 0;

}

and

int Poisson_comm(double x[], void *A_data)

{

int proc, neighbor, length, *itemp;

double send_buffer[2], recv_buffer[2];

itemp = (int *) A_data;

proc = *itemp;

length = 2;

if (proc == 0) {

53

neighbor = 1;

send_buffer[0] = x[0]; send_buffer[1] = x[1];

send_msg(send_buffer, length, neighbor);

recv_msg(recv_buffer, length, neighbor);

x[2] = recv_buffer[1]; x[3] = recv_buffer[0];

}

else {

neighbor = 0;

send_buffer[0] = x[0]; send_buffer[1] = x[2];

send_msg(send_buffer, length, neighbor);

recv_msg(recv_buffer, length, neighbor);

x[3] = recv_buffer[1]; x[4] = recv_buffer[0];

}

return 0;

}

Finally, these matrix functions along with size information are associated with the fine grid
discretization matrix via

if (proc == 0) {nlocal = 2; nlocal_allcolumns = 4;}

else if (proc == 1) {nlocal = 3; nlocal_allcolumns = 5;}

else {nlocal = 0; nlocal_allcolumns = 0;}

ML_Init_Amatrix (ml_object, 0, nlocal, nlocal, &proc);

ML_Set_Amatrix_Getrow(ml_object, 0, Poisson_getrow, Poisson_comm,

nlocal_allcolumns);

ML_Set_Amatrix_Matvec(ml_object, 0, Poisson_matvec);

13 MLMEX: The MATLAB Interface for ML

MLMEX is ML’s interface to the MATLAB environment. It allows access to a limited set
of routines either using the ML Epetra or the MLAPI interfaces. It is designed to provide
access to ML’s aggregation and solver routines from MATLAB and does little else. MLMEX
allows users to setup and solve arbitrarily many problems, so long as memory suffices. More
than one problem can be setup simultaneously.

13.1 Configure and Make

In order to use MLMEX, ML must be configured with (at least) the following options:

../configure -enable-epetra --enable-teuchos --enable-ifpack \

--enable-aztecoo --enable-galeri --enable-amesos --enable-epetraext \

--enable-ml-matlab \

--with-matlab-exec=<directory with matlab binaries> \

--with-matlab-root=<root directory of matlab install>

Additional options (such as --enable-zoltan) can be specified as well.
On 64-bit Intel/AMD architectures, ML and all required Trilinos libraries must be com-

piled with the -fPIC option. This necessitates adding CFLAGS=-fPIC CXXFLAGS=-fPIC FFLAGS=-fPIC

to the Trilinos configure line. Currently, MLMEX will not compile under Solaris.

54

The build system uses the mexext script from Mathworks to detect the appropriate file
extension for the architecture. At least at present, this means that cross-compilation is not
possible.

13.2 Using MLMEX

MLMEX is designed to be interfaced with via the MATLAB script ml.m. There are five
modes in which MLMEX can be run:

1. Setup Mode — Performs the problem setup for ML. Depending on whether or not the
mlmex: interface option is used, MLMEX creates either a ML Epetra or MLAPI
object. This call returns a problem handle used to reference the problem in the future.

2. Solve Mode — Given a problem handle and a right-hand side, ML solves the problem
specified. Setup mode must be called before solve mode.

3. Cleanup Mode — Frees the memory allocated to internal ML objects. This can be
called with a particular problem handle, in which case it frees that problem, or without
one, in which case all MLMEX memory is freed.

4. Status Mode — Prints out status information on problems which have been set up.
Like cleanup, it can be called with or without a particular problem handle.

5. Aggregate Mode — Uses MLMEX as an interface to ML’s aggregation routines.

All of these modes, with the exception of status and cleanup take option lists which will be
directly converted into Teuchos::ParameterList objects by MLMEX. This means that the
options described in Section 6 for ML Epetra and those in the MLAPI guide (for MLAPI)
will work correctly for MLMEX.

13.2.1 Setup Mode

Setup mode is called as follows:

>> [h,oc]=ml(’setup’,A,[’parameter’,value,...])

The parameter A represents the sparse matrix to perform aggregation on and the parame-
ter/value pairs represent standard ML options.

The routine returns a problem handle, h, and the operator complexity oc for the operator.
In addition to the standard options, setup mode has one unique option of its own:
mlmex: interface [string] Whether to use ML Epetra (’epetra’)

or MLAPI (’mlapi’). Default: ’epetra’.

13.2.2 Solve Mode

Solve mode is called as follows:

>> ml(h,A,b,[’parameter’,value,...])

55

The parameter h is a problem handle returned by the setup mode call, A is the sparse
matrix with which to solve and b is the right-hand side. Parameter/value pairs are as
above. However, a few additional MLAPI options, normally not supported by ML Epetra,
are supported as well:
krylov: tolerance [double] Tolerance for the solver. Default: 1e-9.

krylov: max iterations [int] Maximum number of krylov iterations.
Default 1550.

krylov: type [string] Solver to use, e.g. ’cg’, ’gmres’, ’fixed
point’. Default ’gmres’.

krylov: output level [int] ML output level. Default 10.

krylov: conv [int] ML convergence criterion. Default ’r0’.

All of these options are taken directly from MLAPI, so consult its manual for more
information.

13.2.3 Cleanup Mode

Cleanup mode is called as follows:

>> ml(’cleanup’,[h])

The parameter h is a problem handle returned by the setup mode call and is optional. If h
is provided, that problem is cleaned up. If the option is not provided all currently set up
problems are cleaned up.

13.2.4 Status Mode

Status mode is called as follows:

>> ml(’status’,[h])

The parameter h is a problem handle returned by the setup mode call and is optional. If h
is provided, status information for that problem is printed. If the option is not provided all
currently set up problems have status information printed.

13.2.5 Aggregate Mode

Status mode is called as follows:

>> agg=ml(’aggregate’,A,[’parameter’,value,...])

The parameter A represents the sparse matrix to perform aggregation upon. The aggregates
are returned and all memory is immediately freed. The purpose of this option is to allow
access to ML’s aggregation routines in MATLAB.

56

References

[1] P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent, Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers, Comput. Methods in Appl. Mech. Eng.,
(2000), pp. 501–520.

[2] P. B. Bochev, C. J. Garasi, J. J. Hu, A. C. Robinson, and R. S. Tuminaro,
An improved algebraic multigrid method for solving Maxwell’s equations, SIAM J. Sci.
Comput., 25 (2003), pp. 623–642.

[3] A. Brandt, Multi-level Adaptive Solutions to Boundary-Value Problems, Math.
Comp., 31 (1977), pp. 333–390.

[4] E. Chow, Parasails user’s guide, Tech. Rep. UCRL-MA-137863, Lawrence Livermore
National Laboratory, 2000.

[5] T. Davis, UMFPACK home page. http://www.cise.ufl.edu/research/sparse/

umfpack, 2003.

[6] J. W. Demmel, J. R. Gilbert, and X. S. Li, SuperLU Users’ Guide, 2003.

[7] Free Software Foundation, Autoconf Home Page. http://www.gnu.org/

software/autoconf.

[8] , Automake Home Page. http://www.gnu.org/software/automake.

[9] W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, Berlin, 1985.

[10] , Iterative Solution of Large Sparse Linear Systems of Equations, Springer-Verlag,
Berlin, 1994.

[11] M. A. Heroux, Trilinos home page. http://software.sandia.gov/trilinos.

[12] M. A. Heroux, IFPACK Reference Manual, 2.0 ed., 2003. http:

//software.sandia.gov/trilinos/packages/ifpack/doxygen/latex/

IfpackReferenceManual.pdf.

[13] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36
(1998), pp. 204–225.

[14] J. J. Hu, R. S. Tuminaro, P. B. Bochev, C. J. Garasi, and A. C. Robinson,
Toward an h-independent algebraic multigrid method for Maxwell’s equations, SIAM J.
Sci. Comput., (2005). Accepted for publication.

[15] G. Karypis and V. Kumar, ParMETIS: Parallel graph partitioning and sparse ma-
trix ordering li brary, Tech. Rep. 97-060, Department of Computer Science, University
of Minnesota, 1997.

[16] G. Karypis and V. Kumar, METIS: Unstructured graph partitining and sparse
matrix ordering sy stem, tech. rep., University of Minnesota, Department of Computer
Science, 1998.

57

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://software.sandia.gov/trilinos
http://software.sandia.gov/trilinos/packages/ifpack/doxygen/latex/IfpackReferenceManual.pdf
http://software.sandia.gov/trilinos/packages/ifpack/doxygen/latex/IfpackReferenceManual.pdf
http://software.sandia.gov/trilinos/packages/ifpack/doxygen/latex/IfpackReferenceManual.pdf

[17] T. G. Kolda and R. P. Pawlowski, NOX home page. http://software.sandia.
gov/nox.

[18] M. Sala and M. A. Heroux, Trilinos Tutorial, 3.1 ed., 2004.

[19] R. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid, Official Aztec user’s
guide: Version 2.1, Tech. Rep. Sand99-8801J, Sandia National Laboratories, Albu-
querque NM, 87185, Nov 1999.

[20] R. Tuminaro and C. Tong, Parallel smoothed aggregation multigrid: Aggrega-
tion strategies on massively parallel machines, in SuperComputing 2000 Proceedings,
J. Donnelley, ed., 2000.

[21] P. Vanek, M. Brezina, and J. Mandel, Convergence of Algebraic Multigrid Based
on Smoothed Aggregation, Tech. Rep. report 126, UCD/CCM, Denver, CO, 1998.

[22] P. Vanek, J. Mandel, and M. Brezina, Algebraic Multigrid Based on Smoothed
Aggregation for Second and Fourth Order Problems, Computing, 56 (1996), pp. 179–
196.

58

http://software.sandia.gov/nox
http://software.sandia.gov/nox

	Notational Conventions
	Overview
	Multigrid Background
	Quick Start
	Configuring and Building ML
	Building in Standalone Mode
	Building with Aztec 2.1 Support
	Building with Trilinos Support (RECOMMENDED)
	Enabling Third Party Library Support
	Enabling Profiling

	ML and Epetra: Getting Started with the MultiLevelPreconditioner Class
	Example 1: ml_preconditioner.cpp
	Example 2: ml_2level_DD.cpp
	Tips for Achieving Good Parallel Performance
	Hints for the Impatient User
	Dynamic Load-balancing

	List of All Parameters for MultiLevelPreconditioner Class
	General Options
	Aggregation Parameters
	Smoothing Parameters
	Coarsest Grid Parameters
	Load-balancing Options
	Visualization
	Miscellaneous
	Null Space Detection
	Aggregation Strategies

	Default Parameter Settings for Common Problem Types
	Analyzing the ML preconditioner
	Cheap Analysis of All Level Matrices
	Analyze the Effect of Smoothers
	Analyze the effect of the ML cycle on a random vector
	Test different smoothers

	Visualization Capabilities
	Visualizing the Aggregates
	Visualizing the effect of the ML Preconditioner and Smoothers

	Print the Computational Stencil for a 2D Cartesian Grid

	Using the Maxwell Solver in ML
	Background
	Notational conventions
	Operators that the user must supply
	Description of the auxiliary nodal matrix K(n)
	Description of the discrete gradient matrix T

	Smoother options

	Advanced Usage of ML
	Multigrid & Smoothing Options
	Smoothed Aggregation Options
	Aggregation Options
	Interpolation Options

	Advanced Usage of ML and Epetra
	Using ML without Epetra
	Creating a ML matrix: Single Processor
	Creating a ML matrix: Multiple Processors

	MLMEX: The MATLAB Interface for ML
	Configure and Make
	Using MLMEX
	Setup Mode
	Solve Mode
	Cleanup Mode
	Status Mode
	Aggregate Mode

